Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Hum Evol ; 126: 24-38, 2019 01.
Article in English | MEDLINE | ID: mdl-30583842

ABSTRACT

KNM-ER 47000 is a fossil hominin upper limb skeleton from the Koobi Fora Formation, Kenya (FwJj14E, Area 1A) that includes portions of the scapula, humerus, ulna, and hand. Dated to ∼1.52 Ma, the skeleton could potentially belong to one of multiple hominin species that have been documented in the Turkana Basin during this time, including Homo habilis, Homo erectus, and Paranthropus boisei. Although the skeleton lacks associated craniodental material, the partial humerus (described here) preserves anatomical regions (i.e., distal diaphysis, elbow joint) that are informative for taxonomic identification among early Pleistocene hominins. In this study, we analyze distal diaphyseal morphology and the shape of the elbow region to determine whether KNM-ER 47000 can be confidently attributed to a particular species. The morphology of the KNM-ER 47000 humerus (designated KNM-ER 47000B) is compared to that of other early Pleistocene hominin fossil humeri via the application of multivariate ordination techniques to both two-dimensional landmark data (diaphysis) and scale-free linear shape data (elbow). Distance metrics reflecting shape dissimilarity between KNM-ER 47000B and other fossils (and species average shapes) are assessed in the context of intraspecific variation within modern hominid species (Homo sapiens, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus). Our comparative analyses strongly support attribution of KNM-ER 47000 to P. boisei. Compared to four other partial skeletons that have (justifiably or not) been attributed to P. boisei, KNM-ER 47000 provides the most complete picture of upper limb anatomy in a single individual. The taxonomic identification of KNM-ER 47000 makes the skeleton an important resource for testing future hypotheses related to P. boisei upper limb function and the taxonomy of isolated early Pleistocene hominin remains.


Subject(s)
Fossils/anatomy & histology , Hominidae/anatomy & histology , Humerus/anatomy & histology , Animals , Hominidae/classification , Kenya , Paleontology
2.
J Hum Evol ; 126: 51-70, 2019 01.
Article in English | MEDLINE | ID: mdl-30583844

ABSTRACT

A ∼1.52 Ma adult upper limb skeleton of Paranthropus boisei (KNM-ER 47000) recovered from the Koobi Fora Formation, Kenya (FwJj14E, Area 1A) includes most of the distal half of a right humerus (designated KNM-ER 47000B). Natural transverse fractures through the diaphysis of KNM-ER 470000B provide unobstructed views of cortical bone at two sections typically used for analyzing cross-sectional properties of hominids (i.e., 35% and 50% of humerus length from the distal end). Here we assess cross-sectional properties of KNM-ER 47000B and two other P. boisei humeri (OH 80-10, KNM-ER 739). Cross-sectional properties for P. boisei associated with bending/torsional strength (section moduli) and relative cortical thickness (%CA; percent cortical area) are compared to those reported for nonhuman hominids, AL 288-1 (Australopithecus afarensis), and multiple species of fossil and modern Homo. Polar section moduli (Zp) are assessed relative to a mechanically relevant measure of body size (i.e., the product of mass [M] and humerus length [HL]). At both diaphyseal sections, P. boisei exhibits %CA that is high among extant hominids (both human and nonhuman) and similar to that observed among specimens of Pleistocene Homo. High values for Zp relative to size (M × HL) indicate that P. boisei had humeral bending strength greater than that of modern humans and Neanderthals and similar to that of great apes, A. afarensis, and Homo habilis. Such high humeral strength is consistent with other skeletal features of P. boisei (reviewed here) that suggest routine use of powerful upper limbs for arboreal climbing.


Subject(s)
Diaphyses/physiology , Hominidae/physiology , Humerus/physiology , Upper Extremity/physiology , Animals , Anthropology, Physical , Compressive Strength , Diaphyses/anatomy & histology , Hominidae/anatomy & histology , Humerus/anatomy & histology , Paleontology
3.
PeerJ ; 3: e1084, 2015.
Article in English | MEDLINE | ID: mdl-26213653

ABSTRACT

The coexistence of multiple hominin species during the Lower Pleistocene has long presented a challenge for taxonomic attribution of isolated postcrania. Although fossil humeri are well-suited for studies of hominin postcranial variation due to their relative abundance, humeral articular morphology has thus far been of limited value for differentiating Paranthropus from Homo. On the other hand, distal humeral diaphyseal shape has been used to justify such generic distinctions at Swartkrans. The potential utility of humeral diaphyseal shape merits larger-scale quantitative analysis, particularly as it permits the inclusion of fragmentary specimens lacking articular morphology. This study analyzes shape variation of the distal humeral diaphysis among fossil hominins (c. 2-1 Ma) to test the hypothesis that specimens can be divided into distinct morphotypes. Coordinate landmarks were placed on 3D laser scans to quantify cross-sectional shape at a standardized location of the humeral diaphysis (proximal to the olecranon fossa) for a variety of fossil hominins and extant hominids. The fossil sample includes specimens attributed to species based on associated craniodental remains. Mantel tests of matrix correlation were used to assess hypotheses about morphometric relationships among the fossils by comparing empirically-derived Procrustes distance matrices to hypothetical model matrices. Diaphyseal shape variation is consistent with the hypothesis of three distinct morphotypes (Paranthropus, Homo erectus, non-erectus early Homo) in both eastern and southern Africa during the observed time period. Specimens attributed to non-erectus early Homo are unique among hominids with respect to the degree of relative anteroposterior flattening, while H. erectus humeri exhibit morphology more similar to that of modern humans. In both geographic regions, Paranthropus is characterized by a morphology that is intermediate with respect to those morphological features that differentiate the two forms of early Homo. This study demonstrates the utility of the humeral diaphysis for taxonomic identification of isolated postcranial remains and further documents a high degree of postcranial diversity in early Homo.

4.
J Hum Evol ; 75: 90-109, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25128333

ABSTRACT

Previous research suggests that some hominin postcranial features do not follow a linear path of increasing modernization through geological time. With respect to the distal humerus, in particular, the earliest known hominin specimens are reportedly among the most modern in morphology, while some later humeri appear further removed from the average modern human shape. Although Plio-Pleistocene humeri vary widely in size, previous studies have failed to account for size-related shape variation when making morphometric comparisons. This study reexamines hominin postcranial evolution in light of distal humeral allometry. Using two-dimensional landmark data, the relationship between specimen size and shape among modern humans is quantified using multivariate regression and principal components analysis of size-shape space. Fossils are compared with modern human shapes expected at a given size, as well as with the overall average human shape. The null hypothesis of humeral isometry in modern humans is rejected. Subsequently, if one takes allometry into account, the apparent pattern of hominin humeral evolution does not resemble the pattern described above. All 14 of the Plio-Pleistocene hominin fossils examined here share a similar pattern of shape differences from equivalently-sized modern humans, though they vary in the extent to which these differences are expressed. The oldest specimen in the sample (KNM-KP 271; Australopithecus anamensis) exhibits the least human-like elbow morphology. Similarly primitive morphology characterizes all younger species of Australopithecus as well as Paranthropus robustus. After 2 Ma, a subtly more human-like elbow morphology is apparent among specimens attributed to early Homo, as well as among isolated specimens that may represent either Homo or Paranthropus boisei. This study emphasizes the need to consider size-related shape variation when individual fossil specimens are compared with the average shape of a comparative group, particularly when specimens fall near an extreme of the comparative size distribution.


Subject(s)
Biological Evolution , Fossils , Hominidae/anatomy & histology , Humerus/anatomy & histology , Animals , Anthropometry , Humans , Multivariate Analysis
5.
J Anat ; 213(6): 670-85, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19094183

ABSTRACT

Mandibular corpora are well represented in the hominin fossil record, yet few studies have rigorously assessed the utility of mandibular corpus morphology for species recognition, particularly with respect to the linear dimensions that are most commonly available. In this study, we explored the extent to which commonly preserved mandibular corpus morphology can be used to: (i) discriminate among extant hominid taxa and (ii) support species designations among fossil specimens assigned to the genus Homo. In the first part of the study, discriminant analysis was used to test for significant differences in mandibular corpus shape at different taxonomic levels (genus, species and subspecies) among extant hominid taxa (i.e. Homo, Pan, Gorilla, Pongo). In the second part of the study, we examined shape variation among fossil mandibles assigned to Homo (including H. habilis sensu stricto, H. rudolfensis, early African H. erectus/H. ergaster, late African H. erectus, Asian H. erectus, H. heidelbergensis, H. neanderthalensis and H. sapiens). A novel randomization procedure designed for small samples (and using group 'distinctness values') was used to determine whether shape variation among the fossils is consistent with conventional taxonomy (or alternatively, whether a priori taxonomic groupings are completely random with respect to mandibular morphology). The randomization of 'distinctness values' was also used on the extant samples to assess the ability of the test to recognize known taxa. The discriminant analysis results demonstrated that, even for a relatively modest set of traditional mandibular corpus measurements, we can detect significant differences among extant hominids at the genus and species levels, and, in some cases, also at the subspecies level. Although the randomization of 'distinctness values' test is more conservative than discriminant analysis (based on comparisons with extant specimens), we were able to detect at least four distinct groups among the fossil specimens (i.e. H. sapiens, H. heidelbergensis, Asian H. erectus and a combined 'African Homo' group consisting of H. habilis sensu stricto, H. rudolfensis, early African H. erectus/H. ergaster and late African H. erectus). These four groups appear to be distinct at a level similar to, or greater than, that of modern hominid species. In addition, the mandibular corpora of H. neanderthalensis could be distinguished from those of 'African Homo', although not from those of H. sapiens, H. heidelbergensis, or the Asian H. erectus group. The results suggest that the features most commonly preserved on the hominin mandibular corpus have some taxonomic utility, although they are unlikely to be useful in generating a reliable alpha taxonomy for early African members of the genus Homo.


Subject(s)
Fossils , Hominidae/classification , Mandible/anatomy & histology , Animals , Anthropology , Classification/methods , Discriminant Analysis , Female , Genetic Variation , Gorilla gorilla , Hominidae/anatomy & histology , Humans , Male , Pan troglodytes , Pongo pygmaeus , Species Specificity
7.
Am J Phys Anthropol ; 120(3): 278-97, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12567379

ABSTRACT

Differences in body size between conspecific sexes may incur differences in the relative size and/or shape of load-bearing joints, potentially confounding our understanding of variation in the fossil record. More specifically, larger males may experience relatively greater limb joint stress levels than females, unless an increase in weight-related forces is compensated for by positive allometry of articular surface areas. This study examines variation in limb joint size dimorphism (JSD) among extant catarrhines to: 1) determine whether taxa exhibit JSD beyond that expected to simply maintain geometric similarity between sexes, and 2) test whether taxa differ in JSD (relative to body size dimorphism) with respect to differences in limb use and/or phylogeny. "Joint size" was quantified for the distal humerus and distal femur of 25 taxa. Analysis of variance was used to test for differences between sexes (in joint size ratios) and among taxa (in patterns of dimorphism). Multiple regression was used to examine differences in JSD among taxa after accounting for variation in body size dimorphism (BSD) and body size. Although degrees of humeral and femoral JSD tend to be the same within species, interspecific variation exists in the extent to which both joints are dimorphic relative to BSD. While most cercopithecoids exhibit relatively high degrees of JSD (i.e., positive allometry), nonhuman hominoids exhibit degrees of JSD closer to isometry. These results may reflect a fundamental distinction between cercopithecoids and hominoids in joint design. Overall, the results make more sense (from a mechanical standpoint) when adjustments to BSD are made to account for the larger effective female body mass associated with bearing offspring. In contrast to other hominoids, modern humans exhibit relatively high JSD in both the knee and elbow (despite lack of forelimb use in weight support). Estimates of BSD based on fossil limb bones will vary according to the extant analogue chosen for comparison.


Subject(s)
Anthropology, Physical , Elbow Joint/anatomy & histology , Knee Joint/anatomy & histology , Primates/anatomy & histology , Sex Characteristics , Animals , Biomechanical Phenomena , Body Constitution , Female , Humans , Male , Species Specificity
8.
J Hum Evol ; 42(5): 609-26, 2002 May.
Article in English | MEDLINE | ID: mdl-11969299

ABSTRACT

Previous studies have recognized two patterns of distal femoral morphology among the specimens from Hadar (Ethiopia) assigned to Australopithecus afarensis. Size and shape differences between the well-preserved large (AL 333-4) and small (AL 129-1a) distal femora have been used to invoke both taxonomic and functional differences within the A. afarensis hypodigm. Nevertheless, prior studies have not analyzed these specimens in a multivariate context, nor have they compared the pattern of shape differences between the fossils to patterns of sexual dimorphism among extant taxa (i.e., the manner in which males and females differ). This study reexamines morphometric differences between the above specimens in light of observed levels of variation and patterns of sexual dimorphism among extant hominoids. Eight extant reference populations were sampled to provide a standard by which to consider size and shape differences between the fossils. Samples include three populations of modern humans, two subspecies of Pan troglodytes, three subspecies of Gorilla gorilla, Pan paniscus, and Pongo pygmaeus. Using size ratios and scale-free "shape" data (both derived from 2-D coordinate landmarks), size and shape differences between the fossils were evaluated against variation within each reference population using an exact randomization procedure. Growth Difference Matrix Analysis (GDMA) was used to test whether the pattern of morphological differences between the fossils differs significantly from patterns of sexual dimorphism observed among the ten extant groups. Overall morphometric affinities of the fossils to extant taxa were explored using canonical variates analysis (CVA). Results of the randomization tests indicate that the size difference between the Hadar femora can be easily accommodated within most hominoid taxa at the subspecific level (though not within single-sex samples). In addition, the magnitude of shape differences between the fossils can be commonly sampled even within most single-sex samples of a single hominoid subspecies. The pattern of morphological differences between the fossils does not differ statistically from any average pattern of femoral shape dimorphism observed among living hominoids. Moreover, contrary to prior claims, and despite a size disparity between the fossils greater than is typically observed within some chimpanzee and human populations, the two Hadar fossils appear to be much more similar to one another in overall shape than either specimen is to any extant hominoid group.


Subject(s)
Femur/anatomy & histology , Fossils , Hominidae/anatomy & histology , Animals , Anthropology, Physical/methods , Ethiopia , Female , Humans , Male , Phylogeny , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...