Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
3.
STAR Protoc ; 4(3): 102226, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37597187

ABSTRACT

Polyunsaturated fatty acids (PUFAs) and their oxidized products (oxylipins) are important mediators in intra- and extra-cellular signaling. We describe here the simultaneous quantification of 163 PUFAs and oxylipins using liquid chromatography-mass spectrometry (LC-MS). The protocol details steps for PUFA purification from various biological materials, the conditions for LC-MS analysis, as well as quantitative approaches for data evaluation. We provide an example of PUFA quantification in animal tissue along with the bioinformatic protocol, enabling efficient inter-sample comparison and statistical analysis. For complete details on the use and execution of this protocol, please refer to Vila et al.,1 Costanza et al.,2 Blomme et al.,3 and Blomme et al.4.


Subject(s)
Oxylipins , Tandem Mass Spectrometry , Animals , Oxylipins/analysis , Tandem Mass Spectrometry/methods , Fatty Acids, Unsaturated/chemistry , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry
4.
Cell Rep ; 42(6): 112559, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37243595

ABSTRACT

Intermittent fasting (IF) is an established intervention to treat the growing obesity epidemic. However, the interaction between dietary interventions and sex remains a significant knowledge gap. In this study, we use unbiased proteome analysis to identify diet-sex interactions. We report sexual dimorphism in response to intermittent fasting within lipid and cholesterol metabolism and, unexpectedly, in type I interferon signaling, which was strongly induced in females. We verify that secretion of type I interferon is required for the IF response in females. Gonadectomy differentially alters the every-other-day fasting (EODF) response and demonstrates that sex hormone signaling can either suppress or enhance the interferon response to IF. IF fails to potentiate a stronger innate immune response when IF-treated animals were challenged with a viral mimetic. Lastly, the IF response changes with genotype and environment. These data reveal an interesting interaction between diet, sex, and the innate immune system.


Subject(s)
Interferon Type I , Female , Mice , Animals , Gene-Environment Interaction , Gonadal Steroid Hormones , Fasting , Diet , Sex Characteristics
5.
C R Biol ; 346: 29-33, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37254782

ABSTRACT

Detection of cytosolic pathological nucleic acids is a key step for the initiation of innate immune responses. In the past decade, the stimulator of interferon genes (STING) adaptor protein has emerged as a central platform enabling the activation of inflammatory responses in the presence of cytosolic DNAs. This has prompted a plethora of approaches aiming at modulating STING activation in order to boost or inhibit inflammatory responses. However, recent work has revealed that STING is also a direct regulator of metabolic homeostasis. In particular, STING regulates lipid metabolism directly, a function that is conserved throughout evolution. This indicates that STING targeting strategies must take into consideration potential metabolic side effects that may alter disease course, but also suggests that targeting STING may open the route to novel treatments for metabolic disorders. Here we discuss recent work describing the metabolic function of STING and the implications of these findings.


La détection des acides nucléiques pathologiques cytosoliques est une étape clé pour le déclenchement des réponses immunitaires innées. Au cours de la dernière décennie, la protéine adaptatrice STING (stimulator of interferon genes) est apparue comme une plateforme centrale permettant l'activation des réponses inflammatoires en présence d'ADN cytosolique. Cela a donné lieu à une multitude d'approches visant à moduler l'activation de STING afin de stimuler ou d'inhiber les réponses inflammatoires. Cependant, des travaux récents ont révélé que STING est également un régulateur direct de l'homéostasie métabolique. En particulier, STING régule directement le métabolisme des lipides, une fonction qui est conservée au cours de l'évolution. Cela indique que les stratégies de ciblage de STING doivent prendre en compte les effets secondaires métaboliques potentiels qui peuvent modifier l'évolution de la maladie, mais suggère également la possibilité que le ciblage de STING puisse ouvrir la voie à de nouvelles façons de traiter les pathologies présentant une composante métabolique. Nous discutons ici les travaux récents décrivant la fonction métabolique de STING et les implications de ces résultats.


Subject(s)
Lipid Metabolism , Membrane Proteins , Membrane Proteins/genetics , Membrane Proteins/metabolism , Immunity, Innate , DNA
6.
Bioessays ; 45(7): e2300045, 2023 07.
Article in English | MEDLINE | ID: mdl-37147791

ABSTRACT

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is central for the initiation of anti-tumoural immune responses. Enormous effort has been made to optimise the design and administration of STING agonists to stimulate tumour immunogenicity. However, in certain contexts the cGAS-STING axis fuels tumourigenesis. Here, we review recent findings on the regulation of cGAS expression and activity. We particularly focus our attention on the DNA-dependent protein kinase (DNA-PK) complex, that recently emerged as an activator of inflammatory responses in tumour cells. We propose that stratification analyses on cGAS and DNA-PK expression/activation status should be carried out to predict treatment efficacy. We herein also provide insights into non-canonical functions borne by cGAS and cGAMP, highlighting how they may influence tumourigenesis. All these parameters should be taken into consideration concertedly to choose strategies aiming to effectively boost tumour immunogenicity.


Subject(s)
Neoplasms , Protein Kinases , Humans , Carcinogenesis , DNA , Neoplasms/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Animals
7.
EMBO J ; 42(7): e111961, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36574362

ABSTRACT

Cytosolic DNA promotes inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that show undetectable cGAS levels to address if alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex (i) drives cGAS-independent IRF3-mediated type I Interferon responses and (ii) that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment in a glioblastoma model, a process that impairs early tumorigenesis but correlates with poor outcome in glioblastoma patients. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.


Subject(s)
DNA-Activated Protein Kinase , Glioblastoma , Nucleotidyltransferases , Humans , Carcinogenesis , DNA/metabolism , DNA Damage , DNA Repair , Glioblastoma/genetics , Immunity, Innate , Inflammation , Nucleotidyltransferases/metabolism , Tumor Microenvironment , DNA-Activated Protein Kinase/metabolism
8.
Cytokine Growth Factor Rev ; 68: 54-68, 2022 12.
Article in English | MEDLINE | ID: mdl-36085258

ABSTRACT

The Stimulator of Interferon Genes (STING) is a major adaptor protein that is central to the initiation of type I interferon responses and proinflammatory signalling. STING-dependent signalling is triggered by the presence of cytosolic nucleic acids that are generated following pathogen infection or cellular stress. Beyond this central role in controlling immune responses through the production of cytokines and chemokines, recent reports have uncovered inflammation-independent STING functions. Amongst these, a rapidly growing body of evidence demonstrates a key role of STING in controlling metabolic pathways at several levels. Since immunity and metabolic homeostasis are tightly interconnected, these findings deepen our understanding of the involvement of STING in human pathologies. Here, we discuss these findings and reflect on their impact on our current understanding of how nucleic acid immunity controls homeostasis and promotes pathological outcomes.


Subject(s)
Lipid Metabolism , Membrane Proteins , Humans , Immunity, Innate , Cytokines/metabolism , Signal Transduction
9.
STAR Protoc ; 3(2): 101384, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35600929

ABSTRACT

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a pivotal role in several cellular processes including pathogen recognition and inflammatory responses. We describe a protocol to activate the cGAS-STING pathway in murine cells using nucleic acids transfection. We describe how to prepare the nucleic acid probes and validate activation of the pathway by western blot and gene expression analysis. The protocol can be applied to investigate cGAS-STING signaling in both murine and human cell lines. For complete details on the use and execution of this protocol, please refer to Vila et al. (2022).


Subject(s)
Membrane Proteins , Nucleic Acids , Animals , Humans , Membrane Proteins/genetics , Mice , Nucleotidyltransferases/genetics , Signal Transduction/physiology
10.
Cancer Lett ; 538: 215694, 2022 07 10.
Article in English | MEDLINE | ID: mdl-35489447

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a cancer of poor prognosis that presents with a dense desmoplastic stroma that contributes to therapeutic failure. PDAC patients are mostly unresponsive to immunotherapy. However, hopes to elicit response to immunotherapy have emerged with novel strategies targeting the Stimulator of Interferon Genes (STING) protein, which is a major regulator of tumor-associated inflammation. Combination of STING agonists with conventional immunotherapy approaches has proven to potentiate therapeutic benefits in several cancers. However, recent data underscore that the output of STING activation varies depending on the cellular and tissue context. This suggests that tumor heterogeneity, and in particular the heterogeneity of the tumor microenvironment (TME), is a key factor determining whether STING activation would bear benefits for patients. In this review, we discuss the potential benefits of STING activation in PDAC. To this aim, we describe the major components of the PDAC TME, and the expected consequences of STING activation.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/therapy , Humans , Immunotherapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/therapy , Tumor Microenvironment , Pancreatic Neoplasms
11.
Cell Metab ; 34(1): 125-139.e8, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34986331

ABSTRACT

Concerted alteration of immune and metabolic homeostasis underlies several inflammation-related pathologies, ranging from metabolic syndrome to infectious diseases. Here, we explored the coordination of nucleic acid-dependent inflammatory responses and metabolic homeostasis. We reveal that the STING (stimulator of interferon genes) protein regulates metabolic homeostasis through inhibition of the fatty acid desaturase 2 (FADS2) rate-limiting enzyme in polyunsaturated fatty acid (PUFA) desaturation. STING ablation and agonist-mediated degradation increased FADS2-associated desaturase activity and led to accumulation of PUFA derivatives that drive thermogenesis. STING agonists directly activated FADS2-dependent desaturation, promoting metabolic alterations. PUFAs in turn inhibited STING, thereby regulating antiviral responses and contributing to resolving STING-associated inflammation. Thus, we have unveiled a negative regulatory feedback loop between STING and FADS2 that fine-tunes inflammatory responses. Our results highlight the role of metabolic alterations in human pathologies associated with aberrant STING activation and STING-targeting therapies.


Subject(s)
Fatty Acid Desaturases , Metabolic Syndrome , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acids, Unsaturated/metabolism , Humans , Inflammation , Lipid Metabolism
13.
Front Immunol ; 12: 660560, 2021.
Article in English | MEDLINE | ID: mdl-33981307

ABSTRACT

The maintenance of genomic stability in multicellular organisms relies on the DNA damage response (DDR). The DDR encompasses several interconnected pathways that cooperate to ensure the repair of genomic lesions. Besides their repair functions, several DDR proteins have emerged as involved in the onset of inflammatory responses. In particular, several actors of the DDR have been reported to elicit innate immune activation upon detection of cytosolic pathological nucleic acids. Conversely, pattern recognition receptors (PRRs), initially described as dedicated to the detection of cytosolic immune-stimulatory nucleic acids, have been found to regulate DDR. Thus, although initially described as operating in specific subcellular localizations, actors of the DDR and nucleic acid immune sensors may be involved in interconnected pathways, likely influencing the efficiency of one another. Within this mini review, we discuss evidences for the crosstalk between PRRs and actors of the DDR. For this purpose, we mainly focus on cyclic GMP-AMP (cGAMP) synthetase (cGAS) and Interferon Gamma Inducible Protein 16 (IFI16), as major PRRs involved in the detection of aberrant nucleic acid species, and components of the DNA-dependent protein kinase (DNA-PK) complex, involved in the repair of double strand breaks that were recently described to qualify as potential PRRs. Finally, we discuss how the crosstalk between DDR and nucleic acid-associated Interferon responses cooperate for the fine-tuning of innate immune activation, and therefore dictate pathological outcomes. Understanding the molecular determinants of such cooperation will be paramount to the design of future therapeutic approaches.


Subject(s)
DNA Damage/immunology , Immunity, Innate , Nucleic Acids/immunology , Signal Transduction/immunology , Cytosol/immunology , Cytosol/metabolism , Cytosol/pathology , DNA Damage/genetics , Humans , Membrane Proteins/immunology , Receptors, Pattern Recognition/metabolism
14.
J Mol Biol ; 432(20): 5529-5543, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32860771

ABSTRACT

Unresolved inflammation fosters and supports a wide range of human pathologies. There is growing evidence for a role played by cytosolic nucleic acids in initiating and supporting pathological chronic inflammation. In particular, the cGAS-STING pathway has emerged as central to the mounting of nucleic acid-dependent type I interferon responses, leading to the identification of small-molecule modulators of STING that have raised clinical interest. However, several new challenges have emerged, representing potential obstacles to efficient clinical translation. Indeed, the current literature underscores that nucleic acid-induced inflammatory responses are subjected to several layers of regulation, further suggesting complex coordination at the cell-type, tissue or organism level. Untangling the underlying processes is paramount to the identification of specific therapeutic strategies targeting deleterious inflammation. Herein, we present an overview of human pathologies presenting with deregulated interferon levels and with accumulation of cytosolic nucleic acids. We focus on the central role of the STING adaptor protein in these pathologies and discuss how in vivo models have forged our current understanding of nucleic acid immunity. We present our opinion on the advantages and limitations of zebrafish and mice models to highlight their complementarity for the study of inflammatory human pathologies and the development of therapeutics. Finally, we discuss high-throughput screening strategies that generate multi-parametric datasets that allow integrative analysis of heterogeneous information (imaging and omics approaches). These approaches are likely to structure the future of screening strategies for the treatment of human pathologies.


Subject(s)
Immunity , Models, Animal , Nucleic Acids/immunology , Animals , Antiviral Agents/pharmacology , Cytosol/metabolism , DNA, Viral/analysis , Drug Evaluation, Preclinical , Evolution, Molecular , High-Throughput Screening Assays/methods , Immunity, Innate , Inflammation/immunology , Inflammation/metabolism , Interferon Type I/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mutation , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Signal Transduction
15.
Traffic ; 19(1): 58-82, 2018 01.
Article in English | MEDLINE | ID: mdl-29044966

ABSTRACT

The signaling pathway of G protein-coupled receptors is strongly linked to their trafficking profile. Little is known about the molecular mechanisms involved in the vasopressin receptor V1b subtype (V1b R) trafficking and its impact on receptor signaling and regulation. For this purpose, we investigated the role of ß-arrestins in receptor desensitization, internalization and recycling and attempted to dissect the V1b R-mediated MAP kinase pathway. Using MEF cells Knocked-out for ß-arrestins 1 and 2, we demonstrated that both ß-arrestins 1 and 2 play a fundamental role in internalization and recycling of V1b R with a rapid and transient V1b R-ß-arrestin interaction in contrast to a slow and long-lasting ß-arrestin recruitment of the V2 vasopressin receptor subtype (V2 R). Using V1b R-V2 R chimeras and V1b R C-terminus truncations, we demonstrated the critical role of the V1b R C-terminus in its interaction with ß-arrestins thereby regulating the receptor internalization and recycling kinetics in a phosphorylation-independent manner. In parallel, V1b R MAP kinase activation was dependent on arrestins and Src-kinase but independent on G proteins. Interestingly, Src interacted with hV1b R at basal state and dissociated when receptor internalization occurred. Altogether, our data describe for the first time the trafficking profile and MAP kinase pathway of V1b R involving both arrestins and Src kinase family.


Subject(s)
MAP Kinase Signaling System , Receptors, Vasopressin/metabolism , beta-Arrestins/metabolism , Animals , Binding Sites , GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Mice , Protein Binding , Protein Transport , beta-Arrestins/chemistry , src-Family Kinases/metabolism
16.
EBioMedicine ; 8: 184-194, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27428429

ABSTRACT

Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis.


Subject(s)
Cytokines/metabolism , Fanconi Anemia/complications , Fanconi Anemia/genetics , Gene Expression Regulation , Inflammation Mediators/metabolism , Long Interspersed Nucleotide Elements , Neoplasms/etiology , Neoplasms/metabolism , Cell Line , Cytoplasm , DNA Damage , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Fanconi Anemia/immunology , Fanconi Anemia/metabolism , Humans , Interferons/biosynthesis , Recombinases/deficiency , Recombinases/genetics , Recombinases/metabolism , Retroelements/genetics
17.
18.
Front Microbiol ; 5: 176, 2014.
Article in English | MEDLINE | ID: mdl-24795708

ABSTRACT

Viruses have been long known to perturb cell cycle regulators and key players of the DNA damage response to benefit their life cycles. In the case of the human immunodeficiency virus (HIV), the viral auxiliary protein Vpr activates the structure-specific endonuclease SLX4 complex to promote escape from innate immune sensing and, as a side effect, induces replication stress in cycling cells and subsequent cell cycle arrest at the G2/M transition. This novel pathway subverted by HIV to prevent accumulation of viral reverse transcription by-products adds up to facilitating effects of major cellular exonucleases that degrade pathological DNA species. Within this review we discuss the impact of this finding on our understanding of the interplay between HIV replication and nucleic acid metabolism and its implications for cancer-related chronic inflammation.

19.
Cell ; 156(1-2): 134-45, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24412650

ABSTRACT

The HIV auxiliary protein Vpr potently blocks the cell cycle at the G2/M transition. Here, we show that G2/M arrest results from untimely activation of the structure-specific endonuclease (SSE) regulator SLX4 complex (SLX4com) by Vpr, a process that requires VPRBP-DDB1-CUL4 E3-ligase complex. Direct interaction of Vpr with SLX4 induced the recruitment of VPRBP and kinase-active PLK1, enhancing the cleavage of DNA by SLX4-associated MUS81-EME1 endonucleases. G2/M arrest-deficient Vpr alleles failed to interact with SLX4 or to induce recruitment of MUS81 and PLK1. Furthermore, knockdown of SLX4, MUS81, or EME1 inhibited Vpr-induced G2/M arrest. In addition, we show that the SLX4com is involved in suppressing spontaneous and HIV-1-mediated induction of type 1 interferon and establishment of antiviral responses. Thus, our work not only reveals the identity of the cellular factors required for Vpr-mediated G2/M arrest but also identifies the SLX4com as a regulator of innate immunity.


Subject(s)
G2 Phase Cell Cycle Checkpoints , HIV Infections/pathology , HIV-1/metabolism , Immunity, Innate , Multiprotein Complexes/metabolism , Recombinases/metabolism , vpr Gene Products, Human Immunodeficiency Virus/metabolism , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endonucleases/metabolism , HEK293 Cells , HIV Infections/immunology , HIV Infections/virology , HeLa Cells , Humans , Interferon-gamma/metabolism
20.
Cell Rep ; 3(4): 1036-43, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23602554

ABSTRACT

SAMHD1 restricts HIV-1 replication in myeloid and quiescent CD4(+) T cells. Here, we show that SAMHD1 restriction activity is regulated by phosphorylation. SAMHD1 interacts with cyclin A2/cdk1 only in cycling cells. Cyclin A2/CDK1 phosphorylates SAMHD1 at the Threonine 592 residue both in vitro and in vivo. Phosphorylation of SAMHD1 Thr592 correlates with loss of its ability to restrict HIV-1. Indeed, while PMA treatment of proliferating THP1 cells results in reduced Thr592 phosphorylation, activation of resting peripheral blood mononuclear cells (PBMCs) and purified quiescent CD4(+) T cells results in increased phosphorylation of SAMHD1 Thr592. Interestingly, we found that treatment of cells by type 1 interferon reduced Thr592 phosphorylation, reinforcing the link between the phosphorylation of SAMHD1 and its antiviral activity. Unlike wild-type SAMHD1, a phosphorylation-defective mutant was able to restrict HIV-1 replication in both PMA-treated and untreated cells. Our results uncover the phosphorylation of SAMHD1 at Thr592 by cyclin A2/CDK1 as a key regulatory mechanism of its antiviral activity.


Subject(s)
CDC2 Protein Kinase/metabolism , Cyclin A2/metabolism , HIV-1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Animals , Antiviral Agents/pharmacology , Base Sequence , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Line , Humans , Interferon Type I/pharmacology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Molecular Sequence Data , Monomeric GTP-Binding Proteins/genetics , Phosphorylation , SAM Domain and HD Domain-Containing Protein 1 , Sequence Alignment , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...