Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 19(9): e1011169, 2023 09.
Article in English | MEDLINE | ID: mdl-37669313

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identify specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/genetics , Polypharmacology , Africa , Cognition , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins , Receptor-Interacting Protein Serine-Threonine Kinases
2.
PLoS Pathog ; 19(5): e1011385, 2023 05.
Article in English | MEDLINE | ID: mdl-37163552

ABSTRACT

Kaposi's Sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's Sarcoma (KS), a highly vascularized tumor common in AIDS patients and many countries in Africa. KSHV is predominantly in the latent state in the main KS tumor cell, the spindle cell, a cell expressing endothelial cell markers. To identify host genes important for KSHV latent infection of endothelial cells we previously used a global CRISPR/Cas9 screen to identify genes necessary for the survival or proliferation of latently infected cells. In this study we rescreened top hits and found that the highest scoring gene necessary for infected cell survival is the anti-apoptotic Bcl-2 family member Bcl-xL. Knockout of Bcl-xL or treatment with a Bcl-xL inhibitor leads to high levels of cell death in latently infected endothelial cells but not their mock counterparts. Cell death occurs through apoptosis as shown by increased PARP cleavage and activation of caspase-3/7. Knockout of the pro-apoptotic protein, Bax, eliminates the requirement for Bcl-xL. Interestingly, neither Bcl-2 nor Mcl-1, related and often redundant anti-apoptotic proteins of the Bcl-2 protein family, are necessary for the survival of latently infected endothelial cells, likely due to their lack of expression in all the endothelial cell types we have examined. Bcl-xL is not required for the survival of latently infected primary effusion lymphoma (PEL) cells or other cell types tested. Expression of the KSHV major latent locus alone in the absence of KSHV infection led to sensitivity to the absence of Bcl-xL, indicating that viral gene expression from the latent locus induces intrinsic apoptosis leading to the requirement for Bcl-xL in endothelial cells. The critical requirement of Bcl-xL during KSHV latency makes it an intriguing therapeutic target for KS tumors.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Apoptosis , Endothelial Cells/metabolism , Herpesvirus 8, Human/physiology , Virus Latency/physiology
3.
bioRxiv ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36778430

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identifiy specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu ), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch. Author Summary: Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, a cancer particularly prevalent in Africa. In cancer cells, the virus persists in a quiescent form called latency, in which only a few viral genes are made. Periodically, the virus switches into an active replicative cycle in which most of the viral genes are made and new virus is produced. What controls the switch from latency to active replication is not well understood, but cellular kinases, enzymes that control many cellular processes, have been implicated. Using a cell culture model of KSHV reactivation along with an innovative screening method that probes the effects of many cellular kinases simultaneously, we identified drugs that significantly limit KSHV reactivation, as well as specific kinases that either enhance or restrict KSHV replicative cycle. Among these were the ERBB kinases which are known to regulate growth of cancer cells. Understanding how these and other kinases contribute to the switch leading to production of more infectious virus helps us understand the mediators and mechanisms of KSHV diseases. Additionally, because kinase inhibitors are proving to be effective for treating other diseases including some cancers, identifying ones that restrict KSHV replicative cycle may lead to new approaches to treating KSHV-related diseases.

4.
PLoS Pathog ; 19(1): e1010753, 2023 01.
Article in English | MEDLINE | ID: mdl-36689549

ABSTRACT

Kaposi's sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), a hyperplasia consisting of enlarged malformed vasculature and spindle-shaped cells, the main proliferative component of KS. While spindle cells express markers of lymphatic and blood endothelium, the origin of spindle cells is unknown. Endothelial precursor cells have been proposed as the source of spindle cells. We previously identified two types of circulating endothelial colony forming cells (ECFCs), ones that expressed markers of blood endothelium and ones that expressed markers of lymphatic endothelium. Here we examined both blood and lymphatic ECFCs infected with KSHV. Lymphatic ECFCs are significantly more susceptible to KSHV infection than the blood ECFCs and maintain the viral episomes during passage in culture while the blood ECFCs lose the viral episome. Only the KSHV-infected lymphatic ECFCs (K-ECFCLY) grew to small multicellular colonies in soft agar whereas the infected blood ECFCs and all uninfected ECFCs failed to proliferate. The K-ECFCLYs express high levels of SOX18, which supported the maintenance of high copy number of KSHV genomes. When implanted subcutaneously into NSG mice, the K-ECFCLYs persisted in vivo and recapitulated the phenotype of KS tumor cells with high number of viral genome copies and spindling morphology. These spindle cell hallmarks were significantly reduced when mice were treated with SOX18 inhibitor, SM4. These data suggest that KSHV-infected lymphatic ECFCs can be utilized as a KSHV infection model for in vivo translational studies to test novel inhibitors representing potential treatment modalities for KS.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Animals , Mice , Herpesvirus 8, Human/genetics , Endothelial Cells , Endothelium, Vascular/pathology
5.
Proc Natl Acad Sci U S A ; 117(45): 28384-28392, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33122441

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The main proliferating component of KS tumors is a cell of endothelial origin termed the spindle cell. Spindle cells are predominantly latently infected with only a small percentage of cells undergoing viral replication. As there is no direct treatment for latent KSHV, identification of host vulnerabilities in latently infected endothelial cells could be exploited to inhibit KSHV-associated tumor cells. Using a pooled CRISPR-Cas9 lentivirus library, we identified host factors that are essential for the survival or proliferation of latently infected endothelial cells in culture, but not their uninfected counterparts. Among the many host genes identified, there was an enrichment in genes localizing to the mitochondria, including genes involved in mitochondrial translation. Antibiotics that inhibit bacterial and mitochondrial translation specifically inhibited the expansion of latently infected endothelial cells and led to increased cell death in patient-derived PEL cell lines. Direct inhibition of mitochondrial respiration or ablation of mitochondrial genomes leads to increased death in latently infected cells. KSHV latent infection decreases mitochondrial numbers, but there are increases in mitochondrial size, genome copy number, and transcript levels. We found that multiple gene products of the latent locus localize to the mitochondria. During latent infection, KSHV significantly alters mitochondrial biology, leading to enhanced sensitivity to inhibition of mitochondrial respiration, which provides a potential therapeutic avenue for KSHV-associated cancers.


Subject(s)
CRISPR-Cas Systems , Herpesviridae Infections/genetics , Herpesvirus 8, Human/genetics , Mitochondria/metabolism , Virus Latency/genetics , Cell Line , Cell Proliferation , Clustered Regularly Interspaced Short Palindromic Repeats , Endothelial Cells/metabolism , Herpesvirus 8, Human/physiology , Humans , Lymphoma, Primary Effusion/genetics , Sarcoma, Kaposi , Virus Replication
6.
PLoS Pathog ; 16(6): e1008634, 2020 06.
Article in English | MEDLINE | ID: mdl-32555637

ABSTRACT

Kaposi's Sarcoma Herpesvirus (KSHV) is present in the main tumor cells of Kaposi's Sarcoma (KS), the spindle cells, which are of endothelial origin. KSHV is also associated with two B-cell lymphomas, Primary Effusion Lymphoma (PEL) and Multicentric Castleman's Disease. In KS and PEL, KSHV is primarily latent in the infected cells, expressing only a few genes. Although KSHV infection is required for KS and PEL, it is unclear how latent gene expression contributes to their formation. Proliferation of cancer cells occurs despite multiple checkpoints intended to prevent dysregulated cell growth. The first of these checkpoints, caused by shortening of telomeres, results in replicative senescence, where cells are metabolically active, but no longer divide. We found that human dermal lymphatic endothelial cells (LECs) are more susceptible to KSHV infection than their blood-specific endothelial cell counterparts and maintain KSHV latency to higher levels during passage. Importantly, KSHV infection of human LECs but not human BECs promotes their continued proliferation beyond this first checkpoint of replicative senescence. The latently expressed viral cyclin homolog is essential for KSHV-induced bypass of senescence in LECs. These data suggest that LECs may be an important reservoir for KSHV infection and may play a role during KS tumor development and that the viral cyclin is a critical oncogene for this process.


Subject(s)
Cellular Senescence , Cyclins/metabolism , Endothelial Cells/metabolism , Herpesviridae Infections/metabolism , Herpesvirus 8, Human/metabolism , Viral Proteins/metabolism , Cyclins/genetics , Endothelial Cells/pathology , Endothelial Cells/virology , Herpesviridae Infections/genetics , Herpesviridae Infections/pathology , Herpesvirus 8, Human/genetics , Humans , Viral Proteins/genetics
7.
Virology ; 540: 150-159, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31928996

ABSTRACT

During DNA virus infections, detection of cytosolic DNA by the cGAS-STING pathway leads to activation of IFN-ß. Kaposi's Sarcoma Herpesvirus (KSHV), an oncogenic DNA virus, is the etiological agent of Kaposi's Sarcoma, an endothelial cell (EC)-based tumor. To investigate the role of STING during KSHV infection of primary ECs we identified a primary lymphatic EC sample that is defective for STING activation and we also knocked out STING in blood ECs. Ablation of STING in EC does not increase susceptibility to KSHV latent infection nor does it increase KSHV spread after lytic reactivation indicating STING signaling does not restrict KSHV. In contrast, STING ablation increases Adenovirus spread at low MOI, but STING is dispensable for blocking replication. These experiments reveal that the importance of STING depends on the DNA virus and that STING appears more important for restricting spread to bystander cells than for inhibition of viral replication.


Subject(s)
Endothelial Cells/virology , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Herpesvirus 8, Human/physiology , Membrane Proteins/metabolism , DNA, Viral , Disease Susceptibility , Humans , Immunity, Innate , Nucleotidyltransferases/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Virus Replication
8.
Viruses ; 11(2)2019 01 29.
Article in English | MEDLINE | ID: mdl-30699959

ABSTRACT

Viruses manipulate numerous host factors and cellular pathways to facilitate the replication of viral genomes and the production of infectious progeny. One way in which viruses interact with cells is through the utilization and exploitation of the host lipid metabolism. While it is likely that most-if not all-viruses require lipids or intermediates of lipid synthesis to replicate, many viruses also actively induce lipid metabolic pathways to sustain a favorable replication environment. From the formation of membranous replication compartments, to the generation of ATP or protein modifications, viruses exhibit differing requirements for host lipids. Thus, while the exploitation of lipid metabolism is a common replication strategy, diverse viruses employ a plethora of mechanisms to co-opt these critical cellular pathways. Here, we review recent literature regarding the exploitation of host lipids and lipid metabolism specifically by DNA viruses. Importantly, furthering the understanding of the viral requirements for host lipids may offer new targets for antiviral therapeutics and provide opportunities to repurpose the numerous FDA-approved compounds targeting lipid metabolic pathways as antiviral agents.


Subject(s)
DNA Viruses/pathogenicity , Host Microbial Interactions , Lipid Metabolism , Animals , Genome, Viral , Humans , Metabolic Networks and Pathways , Mice , Rhadinovirus/metabolism , Virus Replication
10.
J Virol ; 91(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28275189

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways. We found that glycolysis, glutaminolysis, and FAS are all required for maximal KSHV virus production and that these pathways appear to participate in virus production at different stages of the viral life cycle. Glycolysis and glutaminolysis, but not FAS, inhibit viral genome replication and, interestingly, are required for different early steps of lytic gene expression. Glycolysis is necessary for early gene transcription, while glutaminolysis is necessary for early gene translation but not transcription. Inhibition of FAS resulted in decreased production of extracellular virions but did not reduce intracellular genome levels or block intracellular virion production. However, in the presence of FAS inhibitors, the intracellular virions are noninfectious, indicating that FAS is required for virion assembly or maturation. KS tumors support both latent and lytic KSHV replication. Previous work has shown that multiple cellular metabolic pathways are required for latency, and we now show that these metabolic pathways are required for efficient lytic replication, providing novel therapeutic avenues for KS tumors.IMPORTANCE KSHV is the etiologic agent of Kaposi's sarcoma, the most common tumor of AIDS patients. KS spindle cells, the main tumor cells, all contain KSHV, mostly in the latent state, during which there is limited viral gene expression. However, a percentage of spindle cells support lytic replication and production of virus and these cells are thought to contribute to overall tumor formation. Our previous findings showed that latently infected cells are sensitive to inhibitors of cellular metabolic pathways, including glycolysis, glutaminolysis, and fatty acid synthesis. Here we found that these same inhibitors block the production of infectious virus from lytically infected cells, each at a different stage of viral replication. Therefore, inhibition of specific cellular metabolic pathways can both eliminate latently infected cells and block lytic replication, thereby inhibiting infection of new cells. Inhibition of metabolic pathways provides novel therapeutic approaches for KS tumors.


Subject(s)
Fatty Acids/biosynthesis , Glutamine/metabolism , Glycolysis , Herpesvirus 8, Human/physiology , Sarcoma, Kaposi/virology , Virus Replication , DNA Replication/drug effects , Endothelial Cells/drug effects , Endothelial Cells/virology , Furans/pharmacology , Glutamine/pharmacology , Herpesvirus 8, Human/drug effects , Humans , Hypolipidemic Agents/pharmacology , Metabolic Networks and Pathways/drug effects , Organic Chemicals/pharmacology , Virus Activation/drug effects , Virus Latency/drug effects , Virus Replication/drug effects
11.
PLoS Pathog ; 13(3): e1006256, 2017 03.
Article in English | MEDLINE | ID: mdl-28257516

ABSTRACT

Kaposi's Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi's Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism. To identify the underlying cellular mechanisms of KSHV alteration of host signaling and endothelial cell activation, we identified changes in the host proteome, phosphoproteome and transcriptome landscape following KSHV infection of endothelial cells. A Steiner forest algorithm was used to integrate the global data sets and, together with transcriptome based predicted transcription factor activity, cellular networks altered by latent KSHV were predicted. Several interesting pathways were identified, including peroxisome biogenesis. To validate the predictions, we showed that KSHV latent infection increases the number of peroxisomes per cell. Additionally, proteins involved in peroxisomal lipid metabolism of very long chain fatty acids, including ABCD3 and ACOX1, are required for the survival of latently infected cells. In summary, novel cellular pathways altered during herpesvirus latency that could not be predicted by a single systems biology platform, were identified by integrated proteomics and transcriptomics data analysis and when correlated with our metabolomics data revealed that peroxisome lipid metabolism is essential for KSHV latent infection of endothelial cells.


Subject(s)
Herpesvirus 8, Human/metabolism , Host-Parasite Interactions/physiology , Lipid Metabolism/physiology , Peroxisomes/metabolism , Virus Activation/physiology , Virus Latency/physiology , Cell Separation , Cells, Cultured , Endothelial Cells/virology , Flow Cytometry , Humans , Mass Spectrometry , Microscopy, Confocal , RNA, Small Interfering , Sarcoma, Kaposi/virology , Systems Biology , Transfection
12.
Pathogens ; 6(1)2017 Mar 19.
Article in English | MEDLINE | ID: mdl-28335496

ABSTRACT

The transcriptome of the Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) after primary latent infection of human blood (BEC), lymphatic (LEC) and immortalized (TIME) endothelial cells was analyzed using RNAseq, and compared to long-term latency in BCBL-1 lymphoma cells. Naturally expressed transcripts were obtained without artificial induction, and a comprehensive annotation of the KSHV genome was determined. A set of unique coding sequence (UCDS) features and a process to resolve overlapping transcripts were developed to accurately quantitate transcript levels from specific promoters. Similar patterns of KSHV expression were detected in BCBL-1 cells undergoing long-term latent infections and in primary latent infections of both BEC and LEC cultures. High expression levels of poly-adenylated nuclear (PAN) RNA and spliced and unspliced transcripts encoding the K12 Kaposin B/C complex and associated microRNA region were detected, with an elevated expression of a large set of lytic genes in all latently infected cultures. Quantitation of non-overlapping regions of transcripts across the complete KSHV genome enabled for the first time accurate evaluation of the KSHV transcriptome associated with viral latency in different cell types. Hierarchical clustering applied to a gene correlation matrix identified modules of co-regulated genes with similar correlation profiles, which corresponded with biological and functional similarities of the encoded gene products. Gene modules were differentially upregulated during latency in specific cell types indicating a role for cellular factors associated with differentiated and/or proliferative states of the host cell to influence viral gene expression.

13.
Curr Opin Virol ; 19: 45-9, 2016 08.
Article in English | MEDLINE | ID: mdl-27434732

ABSTRACT

Herpesviruses can establish latent infections in the host with severely limited viral gene expression. Kaposi's Sarcoma-associated herpesvirus (KSHV) is found predominantly in the latent state in the main KS tumor cell, a cell of endothelial origin. While many viruses alter host cell metabolism during productive infection, latent KSHV infection of endothelial cells activates metabolic pathways that are activated in many cancer cells. Inhibition of these major metabolic pathways leads to apoptotic cell death of the latently infected cells. The study of KSHV activation of metabolism may lead to novel therapeutic options for eliminating latent infection of gamma-herpesviruses and could also lead to a deeper mechanistic understanding of how to target cancer cell metabolism.


Subject(s)
Herpesviridae Infections/metabolism , Herpesvirus 8, Human/physiology , Host-Pathogen Interactions , Sarcoma, Kaposi/virology , Virus Latency , Apoptosis , Endothelial Cells/metabolism , Endothelial Cells/virology , Fatty Acids/metabolism , Glycolysis/physiology , Humans , Sarcoma, Kaposi/physiopathology , Sarcoma, Kaposi/therapy
14.
Exp Cell Res ; 340(1): 159-69, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26597759

ABSTRACT

RATIONALE: The identification of circulating endothelial progenitor cells has led to speculation regarding their origin as well as their contribution to neovascular development. Two distinct types of endothelium make up the blood and lymphatic vessel system. However, it has yet to be determined whether there are distinct lymphatic-specific circulating endothelial progenitor cells. OBJECTIVE: This study aims to isolate and characterize the cellular properties and global gene expression of lymphatic-specific endothelial progenitor cells. METHODS AND RESULTS: We isolated circulating endothelial colony forming cells (ECFCs) from whole peripheral blood. These cells are endothelial in nature, as defined by their expression of endothelial markers and their ability to undergo capillary morphogenesis in three-dimensional culture. A subset of isolated colonies express markers of lymphatic endothelium, including VEGFR-3 and Prox-1, with low levels of VEGFR-1, a blood endothelial marker, while the bulk of the isolated cells express high VEGFR-1 levels with low VEGFR-3 and Prox-1 expression. The different isolates have differential responses to VEGF-C, a lymphatic endothelial specific cytokine, strongly suggesting that there are lymphatic specific and blood specific ECFCs. Global analysis of gene expression revealed key differences in the regulation of pathways involved in cellular differentiation between blood and lymphatic-specific ECFCs. CONCLUSION: These data indicate that there are two distinguishable circulating ECFC types, blood and lymphatic, which are likely to have discrete functions during neovascularization.


Subject(s)
Cell Separation , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Profiling , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Real-Time Polymerase Chain Reaction , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
15.
PLoS Pathog ; 11(7): e1005052, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26197457

ABSTRACT

Kaposi's Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of Kaposi's Sarcoma (KS). KSHV establishes a predominantly latent infection in the main KS tumor cell type, the spindle cell, which is of endothelial cell origin. KSHV requires the induction of multiple metabolic pathways, including glycolysis and fatty acid synthesis, for the survival of latently infected endothelial cells. Here we demonstrate that latent KSHV infection leads to increased levels of intracellular glutamine and enhanced glutamine uptake. Depletion of glutamine from the culture media leads to a significant increase in apoptotic cell death in latently infected endothelial cells, but not in their mock-infected counterparts. In cancer cells, glutamine is often required for glutaminolysis to provide intermediates for the tri-carboxylic acid (TCA) cycle and support for the production of biosynthetic and bioenergetic precursors. In the absence of glutamine, the TCA cycle intermediates alpha-ketoglutarate (αKG) and pyruvate prevent the death of latently infected cells. Targeted drug inhibition of glutaminolysis also induces increased cell death in latently infected cells. KSHV infection of endothelial cells induces protein expression of the glutamine transporter, SLC1A5. Chemical inhibition of SLC1A5, or knockdown by siRNA, leads to similar cell death rates as glutamine deprivation and, similarly, can be rescued by αKG. KSHV also induces expression of the heterodimeric transcription factors c-Myc-Max and related heterodimer MondoA-Mlx. Knockdown of MondoA inhibits expression of both Mlx and SLC1A5 and induces a significant increase in cell death of only cells latently infected with KSHV, again, fully rescued by the supplementation of αKG. Therefore, during latent infection of endothelial cells, KSHV activates and requires the Myc/MondoA-network to upregulate the glutamine transporter, SLC1A5, leading to increased glutamine uptake for glutaminolysis. These findings expand our understanding of the required metabolic pathways that are activated during latent KSHV infection of endothelial cells, and demonstrate a novel role for the extended Myc-regulatory network, specifically MondoA, during latent KSHV infection.


Subject(s)
Endothelial Cells/metabolism , Endothelial Cells/virology , Glutamine/metabolism , Herpesvirus 8, Human/physiology , Sarcoma, Kaposi/metabolism , Cell Survival , Cells, Cultured , Humans , Protein Processing, Post-Translational/physiology , Virus Latency/physiology
16.
Virology ; 479-480: 609-18, 2015 May.
Article in English | MEDLINE | ID: mdl-25812764

ABSTRACT

To ensure optimal environments for their replication and spread, viruses have evolved to alter many host cell pathways. In the last decade, metabolomic studies have shown that eukaryotic viruses induce large-scale alterations in host cellular metabolism. Most viruses examined to date induce aerobic glycolysis also known as the Warburg effect. Many viruses tested also induce fatty acid synthesis as well as glutaminolysis. These modifications of carbon source utilization by infected cells can increase available energy for virus replication and virion production, provide specific cellular substrates for virus particles and create viral replication niches while increasing infected cell survival. Each virus species also likely requires unique metabolic changes for successful spread and recent research has identified additional virus-specific metabolic changes induced by many virus species. A better understanding of the metabolic alterations required for the replication of each virus may lead to novel therapeutic approaches through targeted inhibition of specific cellular metabolic pathways.


Subject(s)
Eukaryota/virology , Host-Pathogen Interactions , Metabolism , Virus Physiological Phenomena , Virus Replication , Cytosol/chemistry , Energy Metabolism , Fatty Acids/metabolism , Glutamine/metabolism , Glycolysis
17.
Adv Virol ; 2015: 687162, 2015.
Article in English | MEDLINE | ID: mdl-25709648

ABSTRACT

Nelfinavir (NFV) is an HIV-1 aspartyl protease inhibitor that has numerous effects on human cells, which impart attractive antitumor properties. NFV has also been shown to have in vitro inhibitory activity against human herpesviruses (HHVs). Given the apparent absence of an aspartyl protease encoded by HHVs, we investigated the mechanism of action of NFV herpes simplex virus type 1 (HSV-1) in cultured cells. Selection of HSV-1 resistance to NFV was not achieved despite multiple passages under drug pressure. NFV did not significantly affect the level of expression of late HSV-1 gene products. Normal numbers of viral particles appeared to be produced in NFV-treated cells by electron microscopy but remain within the cytoplasm more often than controls. NFV did not inhibit the activity of the HSV-1 serine protease nor could its antiviral activity be attributed to inhibition of Akt phosphorylation. NFV was found to decrease glycosylation of viral glycoproteins B and C and resulted in aberrant subcellular localization, consistent with induction of endoplasmic reticulum stress and the unfolded protein response by NFV. These results demonstrate that NFV causes alterations in HSV-1 glycoprotein maturation and egress and likely acts on one or more host cell functions that are important for HHV replication.

19.
J Virol ; 89(4): 2358-66, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25505078

ABSTRACT

UNLABELLED: Viruses rely on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. Dengue virus (DENV), a member of the Flaviviridae family, is one of the most important arthropod-borne human pathogens worldwide. We analyzed global intracellular metabolic changes associated with DENV infection of primary human cells. Our metabolic profiling data suggested that central carbon metabolism, particularly glycolysis, is strikingly altered during a time course of DENV infection. Glucose consumption is increased during DENV infection and depriving DENV-infected cells of exogenous glucose had a pronounced impact on viral replication. Furthermore, the expression of both glucose transporter 1 and hexokinase 2, the first enzyme of glycolysis, is upregulated in DENV-infected cells. Pharmacologically inhibiting the glycolytic pathway dramatically reduced DENV RNA synthesis and infectious virion production, revealing a requirement for glycolysis during DENV infection. Thus, these experiments suggest that DENV induces the glycolytic pathway to support efficient viral replication. This study raises the possibility that metabolic inhibitors, such as those that target glycolysis, could be used to treat DENV infection in the future. IMPORTANCE: Approximately 400 million people are infected with dengue virus (DENV) annually, and more than one-third of the global population is at risk of infection. As there are currently no effective vaccines or specific antiviral therapies for DENV, we investigated the impact DENV has on the host cellular metabolome to identify metabolic pathways that are critical for the virus life cycle. We report an essential role for glycolysis during DENV infection. DENV activates the glycolytic pathway, and inhibition of glycolysis significantly blocks infectious DENV production. This study provides further evidence that viral metabolomic analyses can lead to the discovery of novel therapeutic targets to block the replication of medically important human pathogens.


Subject(s)
Dengue Virus/physiology , Glycolysis , Virus Replication , Cells, Cultured , Gene Expression Profiling , Glucose/metabolism , Glucose Transporter Type 1/biosynthesis , Hexokinase/biosynthesis , Humans , Up-Regulation
20.
J Virol ; 88(24): 14301-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25275137

ABSTRACT

UNLABELLED: Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), the most common tumor of AIDS patients worldwide. A key characteristic of KS tumors is extremely high levels of vascular slits and extravasated red blood cells, making neoangiogenesis a key component of the tumor. The main KS tumor cell is the spindle cell, a cell of endothelial origin that maintains KSHV predominantly in the latent state. In cultured endothelial cells, latent KSHV infection induces angiogenic phenotypes, including longer-term stabilization of capillary-like tube formation in Matrigel, a basement membrane matrix. The present studies show that KSHV infection of endothelial cells strongly downregulates transforming growth factor ß2 (TGF-ß2). This downregulation allows the stabilization of capillary-like tube formation during latent infection, as the addition of exogenous TGF-ß2 inhibits the KSHV-induced stability of these structures. While two KSHV microRNAs are sufficient to downregulate TGF-ß2 in endothelial cells, they are not required during KSHV infection. However, activation of the gp130 cell surface receptor is both necessary and sufficient for downregulation of TGF-ß2 in KSHV-infected cells. IMPORTANCE: Kaposi's sarcoma is a highly vascularized, endothelial cell-based tumor supporting large amounts of angiogenesis. There is evidence that KSHV, the etiologic agent of KS, induces aberrant angiogenesis. For example, KSHV induces stabilization of capillary-like tube formation in cultured endothelial cells. A clearer understanding of how KSHV regulates angiogenesis could provide potential therapeutic targets for KS. We found that KSHV downregulates TGF-ß2, a cytokine related to TGF-ß1 that is known to inhibit angiogenesis. The downregulation of this inhibitor promotes the stability of capillary-like tube formation insofar as adding back TGF-ß2 to infected cells blocks KSHV-induced long-term tubule stability. Therefore, KSHV downregulation of TGF-ß2 may increase aberrant vascularization in KS tumors through increased capillary formation and thereby aid in KS tumor promotion.


Subject(s)
Endothelial Cells/physiology , Endothelial Cells/virology , Herpesvirus 8, Human/physiology , Host-Pathogen Interactions , Neovascularization, Pathologic , Transforming Growth Factor beta2/antagonists & inhibitors , Cell Line , Cytokine Receptor gp130/biosynthesis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...