Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 142(30): 13021-13029, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32605368

ABSTRACT

Golgi mannosidase II (GMII) catalyzes the sequential hydrolysis of two mannosyl residues from GlcNAcMan5GlcNAc2 to produce GlcNAcMan3GlcNAc2, the precursor for all complex N-glycans, including the branched N-glycans associated with cancer. Inhibitors of GMII are potential cancer therapeutics, but their usefulness is limited by off-target effects, which produce α-mannosidosis-like symptoms. Despite many structural and mechanistic studies of GMII, we still lack a potent and selective inhibitor of this enzyme. Here, we synthesized manno-epi-cyclophellitol epoxide and aziridines and demonstrate their covalent modification and time-dependent inhibition of GMII. Application of fluorescent manno-epi-cyclophellitol aziridine derivatives enabled activity-based protein profiling of α-mannosidases from both human cell lysate and mouse tissue extracts. Synthesized probes also facilitated a fluorescence polarization-based screen for dGMII inhibitors. We identified seven previously unknown inhibitors of GMII from a library of over 350 iminosugars and investigated their binding modalities through X-ray crystallography. Our results reveal previously unobserved inhibitor binding modes and promising scaffolds for the generation of selective GMII inhibitors.


Subject(s)
Cyclohexanols/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Mannosidases/antagonists & inhibitors , Cyclohexanols/chemical synthesis , Cyclohexanols/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mannosidases/metabolism , Molecular Structure
2.
J Am Chem Soc ; 139(40): 14192-14197, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28937220

ABSTRACT

Human nonlysosomal glucosylceramidase (GBA2) is one of several enzymes that controls levels of glycolipids and whose activity is linked to several human disease states. There is a major need to design or discover selective GBA2 inhibitors both as chemical tools and as potential therapeutic agents. Here, we describe the development of a fluorescence polarization activity-based protein profiling (FluoPol-ABPP) assay for the rapid identification, from a 350+ library of iminosugars, of GBA2 inhibitors. A focused library is generated based on leads from the FluoPol-ABPP screen and assessed on GBA2 selectivity offset against the other glucosylceramide metabolizing enzymes, glucosylceramide synthase (GCS), lysosomal glucosylceramidase (GBA), and the cytosolic retaining ß-glucosidase, GBA3. Our work, yielding potent and selective GBA2 inhibitors, also provides a roadmap for the development of high-throughput assays for identifying retaining glycosidase inhibitors by FluoPol-ABPP on cell extracts containing recombinant, overexpressed glycosidase as the easily accessible enzyme source.


Subject(s)
Enzyme Assays/methods , Enzyme Inhibitors/pharmacology , Fluorescence Polarization/methods , Imino Sugars/pharmacology , beta-Glucosidase/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/chemistry , Glucosylceramidase , Humans , Imino Sugars/chemistry , beta-Glucosidase/metabolism
3.
FEBS Lett ; 590(6): 716-25, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26898341

ABSTRACT

Glycosphingoid bases are elevated in inherited lysosomal storage disorders with deficient activity of glycosphingolipid catabolizing glycosidases. We investigated the molecular basis of the formation of glucosylsphingosine and globotriaosylsphingosine during deficiency of glucocerebrosidase (Gaucher disease) and α-galactosidase A (Fabry disease). Independent genetic and pharmacological evidence is presented pointing to an active role of acid ceramidase in both processes through deacylation of lysosomal glycosphingolipids. The potential pathophysiological relevance of elevated glycosphingoid bases generated through this alternative metabolism in patients suffering from lysosomal glycosidase defects is discussed.


Subject(s)
Acid Ceramidase/metabolism , Fabry Disease/metabolism , Gaucher Disease/metabolism , Glycosphingolipids/metabolism , Acid Ceramidase/genetics , Acylation , Animals , Disease Models, Animal , Fabry Disease/genetics , Female , Gaucher Disease/genetics , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Glycosphingolipids/chemistry , HEK293 Cells , Humans , Lysosomes/metabolism , Male , Mice , Mice, Knockout , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...