Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239890

ABSTRACT

Targeting therapy is a concept that has gained significant importance in recent years, especially in oncology. The severe dose-limiting side effects of chemotherapy necessitate the development of novel, efficient and tolerable therapy approaches. In this regard, the prostate specific membrane antigene (PSMA) has been well established as a molecular target for diagnosis of, as well as therapy for, prostate cancer. Although most PSMA-targeting ligands are radiopharmaceuticals used in imaging or radioligand therapy, this article evaluates a PSMA-targeting small molecule-drug conjugate, and, thus, addresses a hitherto little-explored field. PSMA binding affinity and cytotoxicity were determined in vitro using cell-based assays. Enzyme-specific cleavage of the active drug was quantified via an enzyme-based assay. Efficacy and tolerability in vivo were assessed using an LNCaP xenograft model. Histopathological characterization of the tumor in terms of apoptotic status and proliferation rate was carried out using caspase-3 and Ki67 staining. The binding affinity of the Monomethyl auristatin E (MMAE) conjugate was moderate, compared to the drug-free PSMA ligand. Cytotoxicity in vitro was in the nanomolar range. Both binding and cytotoxicity were found to be PSMA-specific. Additionally, complete MMAE release could be reached after incubation with cathepsin B. In vivo, the MMAE conjugate displayed good tolerability and dose-dependent inhibition of tumor growth. Immunohistochemical and histological studies revealed the antitumor effect of MMAE.VC.SA.617, resulting in the inhibition of proliferation and the enhancement of apoptosis. The developed MMAE conjugate showed good properties in vitro, as well as in vivo, and should, therefore, be considered a promising candidate for a translational approach.


Subject(s)
Immunoconjugates , Male , Humans , Pharmaceutical Preparations , Immunoconjugates/therapeutic use , Cell Line, Tumor , Xenograft Model Antitumor Assays
2.
Molecules ; 26(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34770742

ABSTRACT

(1) Background: Prostate-specific membrane antigen (PSMA) has been extensively studied in the last decade. It became a promising biological target in the diagnosis and therapy of PSMA-expressing cancer diseases. Although there are several radiolabeled PSMA inhibitors available, the search for new compounds with improved pharmacokinetic properties and simplified synthesis is still ongoing. In this study, we developed PSMA ligands with two different hybrid chelators and a modified linker. Both compounds have displayed a promising pharmacokinetic profile. (2) Methods: DATA5m.SA.KuE and AAZTA5.SA.KuE were synthesized. DATA5m.SA.KuE was labeled with gallium-68 and radiochemical yields of various amounts of precursor at different temperatures were determined. Complex stability in phosphate-buffered saline (PBS) and human serum (HS) was examined at 37 °C. Binding affinity and internalization ratio were determined in in vitro assays using PSMA-positive LNCaP cells. Tumor accumulation and biodistribution were evaluated in vivo and ex vivo using an LNCaP Balb/c nude mouse model. All experiments were conducted with PSMA-11 as reference. (3) Results: DATA5m.SA.KuE was synthesized successfully. AAZTA5.SA.KuE was synthesized and labeled according to the literature. Radiolabeling of DATA5m.SA.KuE with gallium-68 was performed in ammonium acetate buffer (1 M, pH 5.5). High radiochemical yields (>98%) were obtained with 5 nmol at 70 °C, 15 nmol at 50 °C, and 60 nmol (50 µg) at room temperature. [68Ga]Ga-DATA5m.SA.KuE was stable in human serum as well as in PBS after 120 min. PSMA binding affinities of AAZTA5.SA.KuE and DATA5m.SA.KuE were in the nanomolar range. PSMA-specific internalization ratio was comparable to PSMA-11. In vivo and ex vivo studies of [177Lu]Lu-AAZTA5.SA.KuE, [44Sc]Sc-AAZTA5.SA.KuE and [68Ga]Ga-DATA5m.SA.KuE displayed specific accumulation in the tumor along with fast clearance and reduced off-target uptake. (4) Conclusions: Both KuE-conjugates showed promising properties especially in vivo allowing for translational theranostic use.


Subject(s)
Antigens, Surface/chemistry , Chelating Agents/chemistry , Glutamate Carboxypeptidase II/chemistry , Radiopharmaceuticals/chemistry , Animals , Chelating Agents/chemical synthesis , Chemistry Techniques, Synthetic , Diagnostic Imaging/methods , Disease Models, Animal , Glutamate Carboxypeptidase II/antagonists & inhibitors , Heterografts , Humans , Isotope Labeling , Kinetics , Mice , Molecular Structure , Neoplasms/diagnostic imaging , Neoplasms/etiology , Protein Binding , Radiopharmaceuticals/chemical synthesis , Translational Research, Biomedical
3.
Bioconjug Chem ; 32(7): 1223-1231, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34170116

ABSTRACT

Targeting vectors bound to a chelator represent a significant fraction of radiopharmaceuticals used nowadays for diagnostic and therapeutic purposes in nuclear medicine. The use of squaramides as coupling units for chelator and targeting vector helps to circumvent the disadvantages of several common coupling methods. This review gives an overview of the use of squaric acid diesters (SADE) as linking agents. It focuses on the conjugation of cyclic chelators, e.g., DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), as well as hybrid chelators like AAZTA5 (6-pentanoic acid-6-amino-1,4-diazepine tetracetic acid) or DATA5m (6-pentanoic acid-6-amino-1,4-diazapine-triacetate) to different targeting vectors, e.g., prostate-specific membrane antigen inhibitors (KuE; PSMAi), fibroblast activation protein inhibitors (FAPi), and monoclonal antibodies (mAbs). An overview of the synthesis, radiolabeling, and in vitro and in vivo behavior of the described structures is given. The unique properties of SADE enable a fast and simple conjugation of chelators to biomolecules, peptides, and small molecules under mild conditions. Furthermore, SA-containing conjugates could not only display similar in vitro characteristics in terms of binding affinity when compared to reference compounds, but may even induce beneficial effects on the pharmacokinetic properties of these radiopharmaceuticals.


Subject(s)
Cyclobutanes/chemistry , Neoplasms/diagnostic imaging , Radiopharmaceuticals/chemistry , Cyclobutanes/therapeutic use , Humans , Neoplasms/drug therapy , Positron-Emission Tomography , Radiopharmaceuticals/therapeutic use
4.
ChemMedChem ; 15(8): 695-704, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32057189

ABSTRACT

The L-lysine urea-L-glutamate (KuE) represents a key motif in recent diagnostic and therapeutic radiopharmaceuticals targeting the prostate specific membrane antigen (PSMA). Using a squaric acid moiety for coupling of KuE with a radioactive label, the squaric acid as a linker in the PSMA ligand seems to mimic the aromatic structure of the naphthylalanine unit on PSMA-617. In this work, we investigate the influence of squaric acid moiety on the biological activity of the compound carrying a KuE motif and three typical chelates. The derivatives TRAM.SA.KuE, DOTAGA.SA.KuE and NODAGA.SA.KuE were all synthesized in straightforward organic reactions and purified by HPLC afterward. Different amounts of tracer were labeled at different temperatures with 68 Ga. PET examinations were performed on NMRInu/nu nude mice with an LNCaP tumor on the right hind leg including ex vivo investigations of the organs. For comparison, 68 Ga-derivatives of PSMA-11 and PSMA-617, the derivatives most commonly used in clinics, were investigated in the same animal model.


Subject(s)
Cyclobutanes/pharmacology , Dipeptides/pharmacology , Edetic Acid/analogs & derivatives , Heterocyclic Compounds, 1-Ring/pharmacology , Oligopeptides/pharmacology , Prostate-Specific Antigen/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Radiopharmaceuticals/pharmacology , Animals , Cyclobutanes/chemistry , Dipeptides/chemical synthesis , Dipeptides/chemistry , Edetic Acid/chemical synthesis , Edetic Acid/chemistry , Edetic Acid/pharmacology , Gallium Isotopes , Gallium Radioisotopes/chemistry , Heterocyclic Compounds, 1-Ring/chemical synthesis , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Male , Mice , Mice, Nude , Molecular Structure , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Positron Emission Tomography Computed Tomography , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...