Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Transl Psychiatry ; 14(1): 183, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600117

ABSTRACT

Human connectome studies have provided abundant data consistent with the hypothesis that functional dysconnectivity is predominant in psychosis spectrum disorders. Converging lines of evidence also suggest an interaction between dorsal anterior cingulate cortex (dACC) cortical glutamate with higher-order functional brain networks (FC) such as the default mode (DMN), dorsal attention (DAN), and executive control networks (ECN) in healthy controls (HC) and this mechanism may be impaired in psychosis. Data from 70 antipsychotic-medication naïve first-episode psychosis (FEP) and 52 HC were analyzed. 3T Proton magnetic resonance spectroscopy (1H-MRS) data were acquired from a voxel in the dACC and assessed correlations (positive FC) and anticorrelations (negative FC) of the DMN, DAN, and ECN. We then performed regressions to assess associations between glutamate + glutamine (Glx) with positive and negative FC of these same networks and compared them between groups. We found alterations in positive and negative FC in all networks (HC > FEP). A relationship between dACC Glx and positive and negative FC was found in both groups, but when comparing these relationships between groups, we found contrasting associations between these variables in FEP patients compared to HC. We demonstrated that both positive and negative FC in three higher-order resting state networks are already altered in antipsychotic-naïve FEP, underscoring the importance of also considering anticorrelations for optimal characterization of large-scale functional brain networks as these represent biological processes as well. Our data also adds to the growing body of evidence supporting the role of dACC cortical Glx as a mechanism underlying alterations in functional brain network connectivity. Overall, the implications for these findings are imperative as this particular mechanism may differ in untreated or chronic psychotic patients; therefore, understanding this mechanism prior to treatment could better inform clinicians.Clinical trial registration: Trajectories of Treatment Response as Window into the Heterogeneity of Psychosis: A Longitudinal Multimodal Imaging Study, NCT03442101 . Glutamate, Brain Connectivity and Duration of Untreated Psychosis (DUP), NCT02034253 .


Subject(s)
Antipsychotic Agents , Connectome , Psychotic Disorders , Humans , Antipsychotic Agents/therapeutic use , Brain , Glutamic Acid , Glutamine , Gyrus Cinguli/diagnostic imaging , Magnetic Resonance Imaging , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Psychotic Disorders/pathology
2.
Biol Psychiatry ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38272288

ABSTRACT

BACKGROUND: Intrinsic brain network connectivity is already altered in first-episode psychosis (FEP), but the longitudinal trajectories of network connectivity, especially in response to antipsychotic treatment, remain poorly understood. The goal of this study was to investigate how antipsychotic medications affect higher-order intrinsic brain network connectivity in FEP. METHODS: Data from 87 antipsychotic medication-naïve patients with FEP and 87 healthy control participants were used. Medication-naïve patients received antipsychotic treatment for 16 weeks. Resting-state functional connectivity (FC) of the default mode, salience, dorsal attention, and executive control networks were assessed prior to treatment and at 6 and 16 weeks after treatment. We evaluated baseline and FC changes using linear mixed models to test group × time interactions within each network. Associations between FC changes after 16 weeks and response to treatment were also evaluated. RESULTS: Prior to treatment, significant group differences in all networks were found. However, significant trajectory changes in FC were found only in the default mode and executive control networks. Changes in FC in these networks were associated with treatment response. Several sensitivity analyses showed a consistent normalization of executive control network FC in response to antipsychotic treatment. CONCLUSIONS: Here, we found that alterations in intrinsic brain network FC were not only alleviated with antipsychotic treatment, but the extent of this normalization was also associated with the degree of reduction in symptom severity. Taken together, our data suggest modulation of intrinsic brain network connectivity (mainly frontoparietal connectivity) as a mechanism underlying antipsychotic treatment response in FEP.

3.
World Psychiatry ; 23(1): 26-51, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38214624

ABSTRACT

Functional neuroimaging emerged with great promise and has provided fundamental insights into the neurobiology of schizophrenia. However, it has faced challenges and criticisms, most notably a lack of clinical translation. This paper provides a comprehensive review and critical summary of the literature on functional neuroimaging, in particular functional magnetic resonance imaging (fMRI), in schizophrenia. We begin by reviewing research on fMRI biomarkers in schizophrenia and the clinical high risk phase through a historical lens, moving from case-control regional brain activation to global connectivity and advanced analytical approaches, and more recent machine learning algorithms to identify predictive neuroimaging features. Findings from fMRI studies of negative symptoms as well as of neurocognitive and social cognitive deficits are then reviewed. Functional neural markers of these symptoms and deficits may represent promising treatment targets in schizophrenia. Next, we summarize fMRI research related to antipsychotic medication, psychotherapy and psychosocial interventions, and neurostimulation, including treatment response and resistance, therapeutic mechanisms, and treatment targeting. We also review the utility of fMRI and data-driven approaches to dissect the heterogeneity of schizophrenia, moving beyond case-control comparisons, as well as methodological considerations and advances, including consortia and precision fMRI. Lastly, limitations and future directions of research in the field are discussed. Our comprehensive review suggests that, in order for fMRI to be clinically useful in the care of patients with schizophrenia, research should address potentially actionable clinical decisions that are routine in schizophrenia treatment, such as which antipsychotic should be prescribed or whether a given patient is likely to have persistent functional impairment. The potential clinical utility of fMRI is influenced by and must be weighed against cost and accessibility factors. Future evaluations of the utility of fMRI in prognostic and treatment response studies may consider including a health economics analysis.

4.
Psychiatry Res ; 322: 114993, 2023 04.
Article in English | MEDLINE | ID: mdl-36773467

ABSTRACT

In order to understand the pathophysiology of schizophrenia we carried out a number of brain imaging studies in both medicated and unmedicated patients. In addition, to help unravel the pathophysiological mechanisms without the confound of prior exposure to antipsychotic medication or chronicity, we enrolled a large group of antipsychotic medication-naïve first episode psychosis patients at first treatment contact, and performed longitudinal multimodal neuroimaging studies over several months. In unmedicated patients we found both functional and structural connectivity alterations. Similarly, in medication-naïve patients we replicated many of our prior findings, suggesting that functional and structural connectivity alterations are core pathological features of the illness. We found that a longer duration of untreated psychosis, i.e. the time between first symptom onset and initial treatment contact, was associated with greater structural and functional connectivity abnormalities, which in turn was associated with worse subsequent clinical response to treatment. These results underscore the critical importance of early identification and treatment in patients with psychosis spectrum disorders.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/diagnosis , Antipsychotic Agents/therapeutic use , Magnetic Resonance Imaging , Psychotic Disorders/diagnosis , Neuroimaging
5.
Schizophr Bull ; 49(3): 605-613, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36752830

ABSTRACT

BACKGROUND: Converging lines of evidence point to hippocampal dysfunction in psychosis spectrum disorders, including altered functional connectivity. Evidence also suggests that antipsychotic medications can modulate hippocampal dysfunction. The goal of this project was to identify patterns of hippocampal connectivity predictive of response to antipsychotic treatment in 2 cohorts of patients with a psychosis spectrum disorder, one medication-naïve and the other one unmedicated. HYPOTHESIS: We hypothesized that we would identify reliable patterns of hippocampal connectivity in the 2 cohorts that were predictive of treatment response and that medications would modulate abnormal hippocampal connectivity after 6 weeks of treatment. STUDY DESIGN: We used a prospective design to collect resting-state fMRI scans prior to antipsychotic treatment and after 6 weeks of treatment with risperidone, a commonly used antipsychotic medication, in both cohorts. We enrolled 44 medication-naïve first-episode psychosis patients (FEP) and 39 unmedicated patients with schizophrenia (SZ). STUDY RESULTS: In both patient cohorts, we observed a similar pattern where greater hippocampal connectivity to regions of the occipital cortex was predictive of treatment response. Lower hippocampal connectivity of the frontal pole, orbitofrontal cortex, subcallosal area, and medial prefrontal cortex was predictive of treatment response in unmedicated SZ, but not in the medication-naïve cohort. Furthermore, greater reduction in hippocampal connectivity to the visual cortex with treatment was associated with better clinical response. CONCLUSIONS: Our results suggest that greater connectivity between the hippocampus and occipital cortex is not only predictive of better treatment response, but that antipsychotic medications have a modulatory effect by reducing hyperconnectivity.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Visual Cortex , Humans , Antipsychotic Agents/therapeutic use , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Schizophrenia/complications , Risperidone/therapeutic use , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Psychotic Disorders/complications , Hippocampus/diagnostic imaging , Visual Cortex/diagnostic imaging , Magnetic Resonance Imaging/methods
6.
Brain Behav ; 12(11): e2625, 2022 11.
Article in English | MEDLINE | ID: mdl-36237115

ABSTRACT

INTRODUCTION: The dorsal striatum, comprised of the caudate and putamen, is implicated in the pathophysiology of psychosis spectrum disorders. Given the high concentration of dopamine receptors in the striatum, striatal dopamine imbalance is a likely cause in cortico-striatal dysconnectivity. There is great interest in understanding the relationship between striatal abnormalities in psychosis and antipsychotic treatment response, but few studies have considered differential involvement of the caudate and putamen. This study's goals were twofold. First, identify patterns of dorsal striatal dysconnectivity for the caudate and putamen separately in patients with a psychosis spectrum disorder; second, determine if these dysconnectivity patterns were predictive of treatment response. METHODS: Using resting state functional connectivity, we evaluated dorsal striatal connectivity using separate bilateral caudate and putamen seed regions in two cohorts of subjects: a cohort of 71 medication-naïve first episode psychosis patients and a cohort of 42 unmedicated patients with schizophrenia (along with matched controls). Patient and control connectivity maps were contrasted for each cohort. After receiving 6 weeks of risperidone treatment, patients' clinical response was calculated. We used regression analyses to determine the relationship between baseline dysconnectivity and treatment response. RESULTS: This dysconnectivity was also predictive of treatment response in both cohorts. DISCUSSION: These findings suggest that the caudate may be more of a driving factor than the putamen in early cortico-striatal dysconnectivity.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/drug therapy , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Magnetic Resonance Imaging , Psychotic Disorders/drug therapy , Putamen/diagnostic imaging , Corpus Striatum/diagnostic imaging
7.
Front Psychiatry ; 13: 886680, 2022.
Article in English | MEDLINE | ID: mdl-35800020

ABSTRACT

Background: While tobacco use among individuals involved in the criminal legal system remains 3-4 times higher than the general population, few interventions have been targeted for this population to aid in smoking cessation. Nicotine replacement therapy (NRT) is a relatively effective and accessible smoking cessation aid; however, individuals frequently stop use of NRT early due to side effects and misperceptions about the products. The present study aims to address low medication adherence by examining the efficacy of an "in vivo" NRT sampling experience in individuals under community criminal legal supervision. Methods: Following recruitment through community legal outlets, participants (N = 517) are randomized to either an "in vivo NRT sampling" group or a standard smoking cessation behavioral counseling group. The in vivo group uses NRT in session and discusses perceptions and experiences of using NRT in real time while the standard smoking cessation counseling group receives four sessions of standard behavioral smoking cessation counseling. Both groups receive four intervention sessions and 12 weeks of NRT following the intervention. The 6-month post-intervention primary outcome measures are smoking point-prevalence abstinence and medication adherence. Conclusion: This is a novel smoking cessation intervention specifically aimed at increasing NRT adherence and smoking cessation among those involved in the criminal legal system, a group of individuals with high smoking rates and low rates of pharmacotherapy use. If proven effective, the present treatment could be a novel intervention to implement in criminal legal settings given the minimal requirement of resources and training.This trial is registered with www.clinicaltrials.gov-NCT02938403.

8.
Schizophrenia (Heidelb) ; 8(1): 42, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35853869

ABSTRACT

Neurological soft signs (NSS) are common in patients with schizophrenia. However, the neural substrates of NSS remain poorly understood. Using legacy PubMed, we performed a systematic review and included studies that assessed NSS and obtained neuroimaging data in patients with a schizophrenia spectrum disorder published up to June 2020. We systematically reviewed 35 relevant articles. Studies consistently implicate the basal ganglia and cerebellum as structural substrates of NSS and suggest that somatomotor and somatosensory regions as well as areas involved in visual processing and spatial orientation may underlie NSS in psychosis spectrum disorders. Additionally, dysfunction of frontoparietal and cerebellar networks has been implicated in the pathophysiology of NSS. The current literature outlines several structural and functional brain signatures that are relevant for NSS in schizophrenia spectrum disorder. The majority of studies assessed gray matter structure, but only a few studies leveraged other imaging methods such as diffusion weighted imaging, or molecular imaging. Due to this, it remains unclear if white matter integrity deficits or neurometabolic alterations contribute to NSS in the illness. While a substantial portion of the literature has been conducted in patients in the early illness stages, mitigating confounds of illness chronicity, few studies have been conducted in antipsychotic medication-naïve patients, which is a clear limitation. Furthermore, only little is known about the temporal evolution of NSS and associated brain signatures. Future studies addressing these pivotal gaps in our mechanistic understanding of NSS will be important.

9.
Schizophr Bull ; 48(6): 1344-1353, 2022 11 18.
Article in English | MEDLINE | ID: mdl-35869578

ABSTRACT

BACKGROUND: The deficit syndrome is a clinical subtype of schizophrenia that is characterized by enduring negative symptoms. Several lines of evidence point to frontoparietal involvement, but the frontoparietal control network (FPCN) and its subsystems (FPCNA and FPCNB) proposed by Yeo et al. have not been systematically characterized at rest in patients with the deficit syndrome. METHODS: We used resting-state fMRI to investigate the FPCN and its subnetworks in 72 healthy controls and 65 antipsychotic medication-naive, first-episode psychosis patients (22 displayed deficit syndrome features, 43 did not). To assess whole-brain FPCN connectivity, we used the right posterior parietal cortex as the seed region. We then performed region of interest analyses in FPCN subsystems. RESULTS: We found that patterns of FPCN dysconnectivity to the whole brain differed in patients who displayed deficit syndrome features compared with those who did not. Examining the FPCN on a more granular level revealed reduced within-FPCN(A) connectivity only in patients displaying deficit features. FPCNB connectivity did not differ between patient groups. DISCUSSION: Here, we describe a neurobiological signature of aberrant FPCN connectivity in antipsychotic-naive, first-episode patients who display clinical features of the deficit syndrome. Importantly, frontoparietal subnetwork connectivity differentiated subgroups, where the FPCNA is selectively involved in patients with deficit features. Our findings add to the growing body of literature supporting a neurobiological distinction between two clinical subtypes of schizophrenia, which has the potential to be leveraged for patient stratification in clinical trials and the development of novel treatments.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Humans , Antipsychotic Agents/pharmacology , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Brain Mapping , Brain , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging
10.
Front Psychiatry ; 13: 889572, 2022.
Article in English | MEDLINE | ID: mdl-35669271

ABSTRACT

Background: Antipsychotic drugs are primarily efficacious in treating positive symptoms by blocking the dopamine D2 receptor, but they fail to substantially improve negative symptoms and cognitive deficits. The limited efficacy may be attributed to the fact that the pathophysiology of psychosis involves multiple neurotransmitter systems. In patients with chronic schizophrenia, memantine, a non-competitive glutamatergic NMDA receptor antagonist, shows promise for ameliorating negative symptoms and improving cognition. Yet, it is unknown how memantine modulates glutamate levels, and memantine has not been investigated in patients with first-episode psychosis. Aims: This investigator-initiated double-blinded randomized controlled trial is designed to (1) test the clinical effects on negative symptoms of add-on memantine to antipsychotic medication, and (2) neurobiologically characterize the responders to add-on memantine. Materials and Equipment: Antipsychotic-naïve patients with first-episode psychosis will be randomized to 12 weeks treatment with [amisulpride + memantine] or [amisulpride + placebo]. We aim for a minimum of 18 patients in each treatment arm to complete the trial. Brain mapping will be performed before and after 12 weeks focusing on glutamate and neuromelanin in predefined regions. Regional glutamate levels will be probed with proton magnetic resonance spectroscopy (MRS), while neuromelanin signal will be mapped with neuromelanin-sensitive magnetic resonance imaging (MRI). We will also perform structural and diffusion weighted, whole-brain MRI. MRS and MRI will be performed at an ultra-high field strength (7 Tesla). Alongside, participants undergo clinical and neuropsychological assessments. Twenty matched healthy controls will undergo similar baseline- and 12-week examinations, but without receiving treatment. Outcome Measures: The primary endpoint is negative symptom severity. Secondary outcomes comprise: (i) clinical endpoints related to cognition, psychotic symptoms, side effects, and (ii) neurobiological endpoints related to regional glutamate- and neuromelanin levels, and structural brain changes. Anticipated Results: We hypothesize that add-on memantine to amisulpride will be superior to amisulpride monotherapy in reducing negative symptoms, and that this effect will correlate with thalamic glutamate levels. Moreover, we anticipate that add-on memantine will restore regional white matter integrity and improve cognitive functioning. Perspectives: By combining two licensed, off-patent drugs, AMEND aims to optimize treatment of psychosis while investigating the memantine response. Alongside, AMEND will provide neurobiological insights to effects of dual receptor modulation, which may enable future stratification of patients with first-episode psychosis before initial antipsychotic treatment. Clinical Trial Registration: [ClinicalTrials.gov], identifier [NCT04789915].

11.
Article in English | MEDLINE | ID: mdl-32684484

ABSTRACT

BACKGROUND: Converging lines of evidence point to hippocampal dysfunction in schizophrenia. It is thought that hippocampal dysfunction spreads across hippocampal subfields and to cortical regions by way of long-range efferent projections. Importantly, abnormalities in the excitation/inhibition balance could impair the long-range modulation of neural networks. The goal of this project was twofold. First, we sought to identify replicable patterns of hippocampal dysconnectivity in patients with a psychosis spectrum disorder. Second, we aimed to investigate a putative link between glutamatergic metabolism and hippocampal connectivity alterations. METHODS: We evaluated resting-state hippocampal functional connectivity alterations in two cohorts of patients with a psychosis spectrum disorder. The first cohort consisted of 55 medication-naïve patients with first-episode psychosis and 41 matched healthy control subjects, and the second cohort consisted of 42 unmedicated patients with schizophrenia and 41 matched control subjects. We also acquired measurements of glutamate + glutamine in the left hippocampus using magnetic resonance spectroscopy for 42 patients with first-episode psychosis and 37 healthy control subjects from our first cohort. RESULTS: We observed a pattern of hippocampal functional hypoconnectivity to regions of the default mode network and hyperconnectivity to the lateral occipital cortex in both cohorts. We also show that in healthy control subjects, greater hippocampal glutamate + glutamine levels predicted greater hippocampal functional connectivity to the anterior default mode network. Furthermore, this relationship was reversed in medication-naïve subjects with first-episode psychosis. CONCLUSIONS: These results suggest that an alteration in the relationship between glutamate and functional connectivity may disrupt the dynamic of major neural networks.


Subject(s)
Schizophrenia , Brain , Default Mode Network , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy
12.
Schizophr Res ; 249: 4-15, 2022 11.
Article in English | MEDLINE | ID: mdl-32014360

ABSTRACT

The aim of this paper is to summarize ultrastructural evidence for glutamatergic dysregulation in several linked regions in postmortem schizophrenia brain. Following a brief summary of glutamate circuitry and how synapses are identified at the electron microscopic (EM) level, we will review EM pathology in the cortex and basal ganglia. We will include the effects of antipsychotic drugs and the relation of treatment response. We will discuss how these findings support or confirm other postmortem findings as well as imaging results. Briefly, synaptic and mitochondrial density in anterior cingulate cortex was decreased in schizophrenia, versus normal controls (NCs), in a selective layer specific pattern. In dorsal striatum, increases in excitatory synaptic density were detected in caudate matrix, a compartment associated with cognitive and motor function, and in the putamen patches, a region associated with limbic function and in the core of the nucleus accumbens. Patients who were treatment resistant or untreated had significantly elevated numbers of excitatory synapses in limbic striatal areas in comparison to NCs and responders. Protein levels of vGLUT2, found in subcortical glutamatergic neurons, were increased in the nucleus accumbens in schizophrenia. At the EM level, schizophrenia subjects had an increase in density of excitatory synapses in several areas of the basal ganglia. In the substantia nigra, the protein levels of vGLUT2 were elevated in untreated patients compared to NCs. The density of inhibitory synapses was decreased in schizophrenia versus NCs. In schizophrenia, glutamatergic synapses are differentially affected depending on the brain region, treatment status, and treatment response.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Antipsychotic Agents/therapeutic use , Synapses/metabolism , Corpus Striatum/metabolism , Putamen
13.
J Psychiatry Neurosci ; 46(6): E702-E710, 2021.
Article in English | MEDLINE | ID: mdl-34933941

ABSTRACT

BACKGROUND: The major excitatory and inhibitory neurometabolites in the brain, glutamate and γ-aminobutyric acid (GABA), respectively, are related to the functional MRI signal. Disruption of resting-state functional MRI signals has been reported in psychosis spectrum disorders, but few studies have investigated the role of these metabolites in this context. METHODS: We included 19 patients with first-episode psychosis and 21 healthy controls in this combined magnetic resonance spectroscopy (MRS) and resting-state functional connectivity study. All imaging was performed on a Siemens Magnetom 7 T MRI scanner. Both the MRS voxel and the seed for functional connectivity analysis were located in the dorsal anterior cingulate cortex (ACC). We used multiple regressions to test for an interaction between ACC brain connectivity, diagnosis and neurometabolites. RESULTS: ACC brain connectivity was altered in first-episode psychosis. The relationship between ACC glutamate and ACC functional connectivity differed between patients with first-episode psychosis and healthy controls in the precuneus, retrosplenial cortex, supramarginal gyrus and angular gyrus. As well, the relationship between ACC GABA and ACC functional connectivity differed between groups in the caudate, putamen and supramarginal gyrus. LIMITATIONS: We used a small sample size. As well, although they were not chronically medicated, all participants were medicated during the study. CONCLUSION: We demonstrated a link between the major excitatory and inhibitory brain metabolites and resting-state functional connectivity in healthy participants, as well as an alteration in this relationship in patients with first-episode psychosis. Combining data from different imaging modalities may help our mechanistic understanding of the relationship between major neurometabolites and brain network dynamics, and shed light on the pathophysiology of first-episode psychosis.


Subject(s)
Glutamic Acid , Psychotic Disorders , Brain , Glutamic Acid/metabolism , Gyrus Cinguli , Humans , Magnetic Resonance Imaging/methods , Neuroimaging , gamma-Aminobutyric Acid/metabolism
14.
Neuroimage Clin ; 32: 102845, 2021.
Article in English | MEDLINE | ID: mdl-34662778

ABSTRACT

BACKGROUND: Salience network (SN) connectivity is altered in schizophrenia, but the pathophysiological origin remains poorly understood. The goal of this multimodal neuroimaging study was to investigate the role of glutamatergic metabolism as putative mechanism underlying SN dysconnectivity in first episode psychosis (FEP) subjects. METHODS: We measured glutamate + glutamine (Glx) in the dorsal anterior cingulate cortex (dACC) from 70 antipsychotic-naïve FEP subjects and 52 healthy controls (HC). The dACC was then used as seed to define positive and negative resting state functional connectivity (FC) of the SN. We used multiple regression analyses to test main effects and group interactions of Glx and FC associations. RESULTS: dACC Glx levels did not differ between groups. Positive FC was significantly reduced in FEP compared to HC, and no group differences were found in negative FC. Group interactions of Glx-FC associations were found within the SN for positive FC, and in parietal cortices for negative FC. In HC, higher Glx levels predicted greater positive FC in the dACC and insula, and greater negative FC of the lateral parietal cortex. These relationships were weaker or absent in FEP. CONCLUSIONS: Here, we found that positive FC in the SN is already altered in medication-naïve FEP, underscoring the importance of considering both correlations and anticorrelations for characterization of pathology. Our data demonstrate that Glx and functional connectivity work differently in FEP than in HC, pointing to a possible mechanism underlying dysconnectivity in psychosis.


Subject(s)
Glutamic Acid , Psychotic Disorders , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
15.
JMIR Ment Health ; 8(8): e26234, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34383682

ABSTRACT

BACKGROUND: Relapse in schizophrenia may be preceded by early warning signs of biological, sensory, and clinical status. Early detection of warning signs may facilitate intervention and prevent relapses. OBJECTIVE: This study aims to investigate the feasibility of using wearable devices and self-reported technologies to identify symptom exacerbation correlates and relapse in patients with schizophrenia. METHODS: In this observational study, patients with schizophrenia were provided with remote sensing devices to continuously monitor activity (Garmin vivofit) and sleep (Philips Actiwatch), and smartphones were used to record patient-reported outcomes. Clinical assessments of symptoms (Positive and Negative Syndrome Scale and Brief Psychiatric Rating Scale) were performed biweekly, and other clinical scales on symptoms (Clinical Global Impression-Schizophrenia, Calgary Depression Scale), psychosocial functioning, physical activity (Yale Physical Activity Survey), and sleep (Pittsburgh Sleep Quality Index) were assessed every 4 weeks. Patients were observed for 4 months, and correlations between clinical assessments and aggregated device metrics data were assessed using a mixed-effect model. An elastic net model was used to predict the clinical symptoms based on the device features. RESULTS: Of the 40 patients enrolled, 1 patient relapsed after being stable with evaluable postbaseline data. Weekly patient-reported outcomes were moderately correlated with psychiatric symptoms (Brief Psychiatric Rating Scale total score, r=0.29; Calgary Depression Scale total score, r=0.37; and Positive and Negative Syndrome Scale total score, r=0.3). In the elastic net model, sleep and activity features derived from Philips Actigraph and Garmin vivofit were predictive of the sitting index of the Yale Physical Activity Survey and sleep duration component of the Pittsburgh Sleep Quality Index. On the basis of the combined patient data, a high percentage of data coverage and compliance (>80%) was observed for each device. CONCLUSIONS: This study demonstrated that wearable devices and smartphones could be effectively deployed and potentially used to monitor patients with schizophrenia. Furthermore, metrics-based prediction models can assist in detecting earlier signs of symptom changes. The operational learnings from this study may provide insights to conduct future studies. TRIAL REGISTRATION: ClinicalTrials.gov NCT02224430; https://www.clinicaltrials.gov/ct2/show/NCT02224430.

16.
Schizophr Bull Open ; 2(1): sgab032, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34414373

ABSTRACT

INTRODUCTION: Only a few studies have comprehensively characterized default mode network (DMN) pathology on a structural and functional level, and definite conclusions cannot be drawn due to antipsychotic medication exposure and illness chronicity. The objective of this study was to characterize DMN pathology in medication-naïve first episode psychosis (FEP) patients, and determine if DMN structural and functional connectivity (FC) have potential utility as a predictor for subsequent antipsychotic treatment response. METHODS: Diffusion imaging and resting state FC data from 42 controls and 52 FEP were analyzed. Patients then received 16 weeks of antipsychotic treatment. Using region of interest analyses, we quantified FC of the DMN and structural integrity of the white matter tracts supporting DMN function. We then did linear regressions between DMN structural and FC indices and antipsychotic treatment response. RESULTS: We detected reduced DMN fractional anisotropy and axial diffusivity in FEP compared to controls. No DMN FC abnormalities nor correlations between DMN structural and FC were found. Finally, DMN fractional anisotropy and radial diffusivity were associated with response to treatment. CONCLUSION: Our study highlights the critical role of the DMN in the pathophysiology suggesting that axonal damage may already be present in FEP patients. We also demonstrated that DMN pathology is clinically relevant, as greater structural DMN alterations were associated with a less favorable clinical response to antipsychotic medications.

17.
Eur Neuropsychopharmacol ; 47: 11-19, 2021 06.
Article in English | MEDLINE | ID: mdl-33819817

ABSTRACT

Prior studies indicate that chronic schizophrenia (SZ) is associated with a specific profile of reinforcement learning abnormalities. These impairments are characterized by: 1) reductions in learning rate, and 2) impaired Go learning and intact NoGo learning. Furthermore, each of these deficits are associated with greater severity of negative symptoms, consistent with theoretical perspectives positing that avolition and anhedonia are associated with impaired value representation. However, it is unclear whether these deficits extend to earlier phases of psychotic illness and when individuals are unmedicated. Two studies were conducted to examine reinforcement learning deficits in earlier phases of psychosis and in high risk patients. In study 1, participants included 35 participants with first episode psychosis (FEP) with limited antipsychotic medication exposure and 25 healthy controls (HC). Study 2 included 17 antipsychotic naïve individuals who were at clinical high-risk for psychosis (CHR) (i.e., attenuated psychosis syndrome) and 18 matched healthy controls (HC). In both studies, participants completed the Temporal Utility Integration Task, a measure of probabilistic reinforcement learning that contained Go and NoGo learning blocks. FEP displayed impaired Go and NoGo learning. In contrast, CHR did not display impairments in Go or NoGo learning. Impaired Go learning was not significantly associated with clinical outcomes in the CHR or FEP samples. Findings provide new evidence for areas of spared and impaired reinforcement learning in early phases of psychosis.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Antipsychotic Agents/therapeutic use , Humans , Learning , Psychotic Disorders/complications , Psychotic Disorders/drug therapy , Reinforcement, Psychology , Schizophrenia/complications , Schizophrenia/drug therapy
18.
Ann Clin Transl Neurol ; 7(10): 1973-1984, 2020 10.
Article in English | MEDLINE | ID: mdl-32991786

ABSTRACT

OBJECTIVE: To further evaluate the relationship between the clinical profiles and limbic and motor brain regions and their connecting pathways in psychogenic nonepileptic seizures (PNES). Neurite Orientation Dispersion and Density Indices (NODDI) multicompartment modeling was used to test the relationships between tissue alterations in patients with traumatic brain injury (TBI) and multiple psychiatric symptoms. METHODS: The sample included participants with prior TBI (TBI; N = 37) but no PNES, and with TBI and PNES (TBI + PNES; N = 34). Participants completed 3T Siemens Prisma MRI high angular resolution imaging diffusion protocol. Statistical maps, including fractional anisotropy (FA), mean diffusivity (MD), neurite dispersion [orientation dispersion index (ODI)] and density [intracellular volume fraction (ICVF), and free water (i.e., isotropic) volume fraction (V-ISO)] signal intensity, were generated for each participant. Linear mixed-effects models identified clusters of between-group differences in indices of white matter changes. Pearson's r correlation tests assessed any relationship between signal intensity and psychiatric symptoms. RESULTS: Compared to TBI, TBI + PNES revealed decreases in FA, ICVF, and V-ISO and increases in MD for clusters within cingulum bundle, uncinate fasciculus, fornix/stria terminalis, and corticospinal tract pathways (cluster threshold α = 0.05). Indices of white matter changes for these clusters correlated with depressive, anxiety, PTSD, psychoticism, and somatization symptom severity (FDR threshold α = 0.05). A follow-up within-group analysis revealed that these correlations failed to reach the criteria for significance in the TBI + PNES group alone. INTERPRETATION: The results expand support for the hypothesis that alterations in pathways comprising the specific PNES network correspond to patient profiles. These findings implicate myelin-specific changes as possible contributors to PNES, thus introducing novel potential treatment targets.


Subject(s)
Anisotropy , Magnetic Resonance Imaging , Nerve Net/anatomy & histology , White Matter/pathology , Adult , Brain Injuries, Traumatic/diagnosis , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Myelin Sheath/metabolism , Neurites/pathology , Neurites/ultrastructure , Seizures/psychology , White Matter/physiopathology
19.
NPJ Schizophr ; 6(1): 23, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32887887

ABSTRACT

We combined magnetoencephalography (MEG), 7 T proton magnetic resonance spectroscopy (MRS), and 7 T fMRI during performance of a task in a group of 23 first episode psychosis (FEP) patients and 26 matched healthy controls (HC). We recorded both the auditory evoked response to 40 Hz tone clicks and the resting state in MEG. Neurometabolite levels were obtained from the anterior cingulate cortex (ACC). The fMRI BOLD response was obtained during the Stroop inhibitory control task. FEP showed a significant increase in resting state low frequency theta activity (p < 0.05; Cohen d = 0.69), but no significant difference in the 40 Hz auditory evoked response compared to HC. An across-groups whole brain analysis of the fMRI BOLD response identified eight regions that were significantly activated during task performance (p < 0.01, FDR-corrected); the mean signal extracted from those regions was significantly different between the groups (p = 0.0006; d = 1.19). In the combined FEP and HC group, there was a significant correlation between the BOLD signal during task performance and MEG resting state low frequency activity (p < 0.05). In FEP, we report significant alteration in resting state low frequency MEG activity, but no alterations in auditory evoked gamma band response, suggesting that the former is a more robust biomarker of early psychosis. There were no correlations between gamma oscillations and GABA levels in either HC or FEP. Finally, in this study, each of the three imaging modalities differentiated FEP from HC; fMRI with good and MEG and MRS with moderate effect size.

20.
Neuropsychopharmacology ; 45(11): 1842-1850, 2020 10.
Article in English | MEDLINE | ID: mdl-32403118

ABSTRACT

Glutamate neurotransmission is a prioritized target for antipsychotic drug development. Two metabotropic glutamate receptor 2/3 (mGluR2/3) agonists (pomaglumetad [POMA] and TS-134) were assessed in two Phase Ib proof of mechanism studies of comparable designs and using identical clinical assessments and pharmacoBOLD methodology. POMA was examined in a randomized controlled trial under double-blind conditions for 10-days at doses of 80 or 320 mg/d POMA versus placebo (1:1:1 ratio). The TS-134 trial was a randomized, single-blind, 6-day study of 20 or 60 mg/d TS-134 versus placebo (5:5:2 ratio). Primary outcomes were ketamine-induced changes in pharmacoBOLD in the dorsal anterior cingulate cortex (dACC) and symptoms reflected on the Brief Psychiatric Rating Scale (BPRS). Both trials were conducted contemporaneously. 95 healthy volunteers were randomized to POMA and 63 to TS-134. High-dose POMA significantly reduced ketamine-induced BPRS total symptoms within and between-groups (p < 0.01, d = -0.41; p = 0.04, d = -0.44, respectively), but neither POMA dose significantly suppressed ketamine-induced dACC pharmacoBOLD. In contrast, low-dose TS-134 led to moderate to large within and between group reductions in both BPRS positive symptoms (p = 0.02, d = -0.36; p = 0.008, d = -0.82, respectively) and dACC pharmacoBOLD (p = 0.004, d = -0.56; p = 0.079, d = -0.50, respectively) using pooled across-study placebo data. High-dose POMA exerted significant effects on clinical symptoms, but not on target engagement, suggesting a higher dose may yet be needed, while the low dose of TS-134 showed evidence of symptom reduction and target engagement. These results support further investigation of mGluR2/3 and other glutamate-targeted treatments for schizophrenia.


Subject(s)
Antipsychotic Agents , Ketamine , Pharmaceutical Preparations , Schizophrenia , Antipsychotic Agents/therapeutic use , Double-Blind Method , Healthy Volunteers , Humans , Ketamine/therapeutic use , Schizophrenia/drug therapy , Single-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL
...