Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36230164

ABSTRACT

The demand to develop and produce eco-friendly alternatives for food packaging is increasing. The huge negative impact that the disposal of so-called "single-use plastics" has on the environment is propelling the market to search for new solutions, and requires initiatives to drive faster responses from the scientific community, the industry, and governmental bodies for the adoption and implementation of new materials. Bioplastics are an alternative group of materials that are partly or entirely produced from renewable sources. Some bioplastics are biodegradable or even compostable under the right conditions. This review presents the different properties of these materials, mechanisms of biodegradation, and their environmental impact, but also presents a holistic overview of the most important bioplastics available in the market and their potential application for food packaging, consumer perception of the bioplastics, regulatory aspects, and future challenges.

2.
Foods ; 10(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672556

ABSTRACT

Market implementation of active and intelligent packaging (AIP) technologies specifically for fiber-based food packaging can be hindered by various factors. This paper highlights those from a social, economic, environmental, and legislative point of view, and elaborates upon the following aspects mainly related to interactions among food packaging value chain stakeholders: (i) market drivers that affect developments, (ii) the gap between science and industry, (iii) the gap between legislation and practice, (iv) cooperation between the producing stakeholders within the value chain, and (v) the gap between the industry and consumers. We perceive these as the most influential aspects in successful market implementation at a socioeconomic level. The findings are supported by results from quantitative studies analyzing consumer buying expectations about active and intelligent packaging (value perception of packaging functions, intentions to purchase AIP, and willingness to pay more) executed in 16 European countries. Finally, in this paper, we discuss approaches that could direct future activities in the field towards industrial implementation.

4.
ACS Appl Mater Interfaces ; 11(12): 11920-11927, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30829474

ABSTRACT

Recent years have seen an increased interest toward utilizing biobased and biodegradable materials for barrier packaging applications. Most of the abovementioned materials usually have certain shortcomings that discourage their adoption as a preferred material of choice. Nanocellulose falls into such a category. It has excellent barrier against grease, mineral oils, and oxygen but poor tolerance against water vapor, which makes it unsuitable to be used at high humidity. In addition, nanocellulose suspensions' high viscosity and yield stress already at low solid content and poor adhesion to substrates create additional challenges for high-speed processing. Polylactic acid (PLA) is another potential candidate that has reasonably high tolerance against water vapor but rather a poor barrier against oxygen. The current work explores the possibility of combining both these materials into thin multilayer coatings onto a paperboard. A custom-built slot-die was used to coat either microfibrillated cellulose or cellulose nanocrystals onto a pigment-coated baseboard in a continuous process. These were subsequently coated with PLA using a pilot-scale extrusion coater. Low-density polyethylene was used as for reference extrusion coating. Cationic starch precoating and corona treatment improved the adhesion at nanocellulose/baseboard and nanocellulose/PLA interfaces, respectively. The water vapor transmission rate for nanocellulose + PLA coatings remained lower than that of the control PLA coating, even at a high relative humidity of 90% (38 °C). The multilayer coating had 98% lower oxygen transmission rate compared to just the PLA-coated baseboard, and the heptane vapor transmission rate reduced by 99% in comparison to the baseboard. The grease barrier for nanocellulose + PLA coatings increased 5-fold compared to nanocellulose alone and 2-fold compared to PLA alone. This approach of processing nanocellulose and PLA into multiple layers utilizing slot-die and extrusion coating in tandem has the potential to produce a barrier packaging paper that is both 100% biobased and biodegradable.

5.
Biomacromolecules ; 20(1): 502-514, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30540441

ABSTRACT

Cellulose nanofiber films (CNFF) were treated via a welding process using ionic liquids (ILs). Acid-base-conjugated ILs derived from 1,5-diazabicyclo[4.3.0]non-5-ene [DBN] and 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) were utilized. The removal efficiency of ILs from welded CNFF was assessed using liquid-state nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared spectroscopy (FTIR). The mechanical and physical properties of CNFF indicated surface plasticization of CNFF, which improved transparency. Upon treatment, the average CNFF toughness increased by 27%, and the films reached a Young's modulus of ∼5.8 GPa. These first attempts for IL "welding" show promise to tune the surfaces of biobased films, expanding the scope of properties for the production of new biobased materials in a green chemistry context. The results of this work are highly relevant to the fabrication of CNFFs using ionic liquids and related solvents.


Subject(s)
Cellulose/analogs & derivatives , Ionic Liquids/chemistry , Nanofibers/chemistry , Biodegradable Plastics/chemistry , Elastic Modulus , Imidazoles/chemistry , Membranes, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL
...