Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 29(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338333

ABSTRACT

Bacterial infections pose a significant risk to human health. Magnolol, derived from Magnolia officinalis, exhibits potent antibacterial properties. Synthetic biology offers a promising approach to manufacture such natural compounds. However, the plant-based biosynthesis of magnolol remains obscure, and the lack of identification of critical genes hampers its synthetic production. In this study, we have proposed a one-step conversion of magnolol from chavicol using laccase. After leveraging 20 transcriptomes from diverse parts of M. officinalis, transcripts were assembled, enriching genome annotation. Upon integrating this dataset with current genomic information, we could identify 30 laccase enzymes. From two potential gene clusters associated with magnolol production, highly expressed genes were subjected to functional analysis. In vitro experiments confirmed MoLAC14 as a pivotal enzyme in magnolol synthesis. Improvements in the thermal stability of MoLAC14 were achieved through selective mutations, where E345P, G377P, H347F, E346C, and E346F notably enhanced stability. By conducting alanine scanning, the essential residues in MoLAC14 were identified, and the L532A mutation further boosted magnolol production to an unprecedented level of 148.83 mg/L. Our findings not only elucidated the key enzymes for chavicol to magnolol conversion, but also laid the groundwork for synthetic biology-driven magnolol production, thereby providing valuable insights into M. officinalis biology and comparative plant science.


Subject(s)
Allyl Compounds , Lignans , Magnolia , Phenols , Humans , Magnolia/genetics , Magnolia/chemistry , Laccase , Lignans/chemistry , Biphenyl Compounds/chemistry
2.
Article in English | MEDLINE | ID: mdl-38237126

ABSTRACT

Introduction: Olivetolic acid (OLA) is a key intermediate in cannabidiol (CBD) synthesis, and cannabinoids are important neuroactive drugs. However, the catalytic activity of olivetolic acid synthase (OLS), the key enzyme involved in OLA biosynthesis, remains low and its catalytic mechanism is unclear. Materials and Methods: In this study, we conducted a scrupulous screening of the pivotal rate-limiting enzyme and analyzed its amino acid sites that are critical to enzyme activity as validated by experiments. Results: Through stringent enzyme screening, we pinpointed a highly active OLS sequence, OLS4. Then, we narrowed down three critical amino acid sites (I258, D198, E196) that significantly influence the OLS activity. Conclusions: Our findings laid the groundwork for the efficient biosynthesis of OLA, and thereby facilitate the biosynthesis of CBD.

SELECTION OF CITATIONS
SEARCH DETAIL