Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: mdl-37317970

ABSTRACT

While the rapid advancement of immunotherapies has revolutionized cancer treatment, only a small fraction of patients derive clinical benefit. Eradication of large, established tumors appears to depend on engaging and activating both innate and adaptive immune system components to mount a rigorous and comprehensive immune response. Identifying such agents is a high unmet medical need, because they are sparse in the therapeutic landscape of cancer treatment. Here, we report that IL-36 cytokine can engage both innate and adaptive immunity to remodel an immune-suppressive tumor microenvironment (TME) and mediate potent antitumor immune responses via signaling in host hematopoietic cells. Mechanistically, IL-36 signaling modulates neutrophils in a cell-intrinsic manner to greatly enhance not only their ability to directly kill tumor cells but also promote T and NK cell responses. Thus, while poor prognostic outcomes are typically associated with neutrophil enrichment in the TME, our results highlight the pleiotropic effects of IL-36 and its therapeutic potential to modify tumor-infiltrating neutrophils into potent effector cells and engage both the innate and adaptive immune system to achieve durable antitumor responses in solid tumors.


Subject(s)
Adaptive Immunity , Neutrophils , Humans , Cytokines , Immunosuppression Therapy , Immunotherapy
2.
J Immunol ; 209(4): 742-750, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35868637

ABSTRACT

The local microenvironment shapes macrophage differentiation in each tissue. We hypothesized that in the peritoneum, local factors in addition to retinoic acid can support GATA6-driven differentiation and function of peritoneal large cavity macrophages (LCMs). We found that soluble proteins produced by mesothelial cells lining the peritoneal cavity maintained GATA6 expression in cultured LCMs. Analysis of global gene expression of isolated mesothelial cells highlighted mesothelin (Msln) and its binding partner mucin 16 (Muc16) as candidate secreted ligands that potentially regulate GATA6 expression in peritoneal LCMs. Mice deficient for either of these molecules showed diminished GATA6 expression in peritoneal and pleural LCMs that was most prominent in aged mice. The more robust phenotype in older mice suggested that monocyte-derived macrophages were the target of Msln and Muc16. Cell transfer and bone marrow chimera experiments supported this hypothesis. We found that lethally irradiated Msln-/- and Muc16-/- mice reconstituted with wild-type bone marrow had lower levels of GATA6 expression in peritoneal and pleural LCMs. Similarly, during the resolution of zymosan-induced inflammation, repopulated peritoneal LCMs lacking expression of Msln or Muc16 expressed diminished GATA6. These data support a role for mesothelial cell-produced Msln and Muc16 in local macrophage differentiation within large cavity spaces such as the peritoneum. The effect appears to be most prominent on monocyte-derived macrophages that enter into this location as the host ages and also in response to infection.


Subject(s)
Macrophages, Peritoneal , Macrophages , Mice , Animals , Peritoneal Cavity , Peritoneum , Epithelium
3.
Gut ; 71(7): 1289-1301, 2022 07.
Article in English | MEDLINE | ID: mdl-34261752

ABSTRACT

OBJECTIVE: Fibrosis is a common feature of Crohn's disease (CD) which can involve the mesenteric fat. However, the molecular signature of this process remains unclear. Our goal was to define the transcriptional signature of mesenteric fibrosis in CD subjects and to model mesenteric fibrosis in mice to improve our understanding of CD pathogenesis. DESIGN: We performed histological and transcriptional analysis of fibrosis in CD samples. We modelled a CD-like fibrosis phenotype by performing repeated colonic biopsies in mice and analysed the model by histology, type I collagen-targeted positron emission tomography (PET) and global gene expression. We generated a gene set list of essential features of mesenteric fibrosis and compared it to mucosal biopsy datasets from inflammatory bowel disease patients to identify a refined gene set that correlated with clinical outcomes. RESULTS: Mesenteric fibrosis in CD was interconnected to areas of fibrosis in all layers of the intestine, defined as penetrating fibrosis. We found a transcriptional signature of differentially expressed genes enriched in areas of the mesenteric fat of CD subjects with high levels of fibrosis. Mice subjected to repeated colonic biopsies showed penetrating fibrosis as shown by histology, PET imaging and transcriptional analysis. Finally, we composed a composite 24-gene set list that was linked to inflammatory fibroblasts and correlated with treatment response. CONCLUSION: We linked histopathological and molecular features of CD penetrating fibrosis to a mouse model of repeated biopsy injuries. This experimental system provides an innovative approach for functional investigations of underlying profibrotic mechanisms and therapeutic concepts in CD.


Subject(s)
Crohn Disease , Animals , Crohn Disease/complications , Crohn Disease/drug therapy , Crohn Disease/genetics , Fibrosis , Humans , Intestines/pathology , Mesentery/pathology , Mice , Tumor Necrosis Factor Inhibitors
4.
Nat Commun ; 12(1): 2313, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875650

ABSTRACT

Advances in mass-spectrometry have generated increasingly large-scale proteomics datasets containing tens of thousands of phosphorylation sites (phosphosites) that require prioritization. We develop a bioinformatics tool called HotPho and systematically discover 3D co-clustering of phosphosites and cancer mutations on protein structures. HotPho identifies 474 such hybrid clusters containing 1255 co-clustering phosphosites, including RET p.S904/Y928, the conserved HRAS/KRAS p.Y96, and IDH1 p.Y139/IDH2 p.Y179 that are adjacent to recurrent mutations on protein structures not found by linear proximity approaches. Hybrid clusters, enriched in histone and kinase domains, frequently include expression-associated mutations experimentally shown as activating and conferring genetic dependency. Approximately 300 co-clustering phosphosites are verified in patient samples of 5 cancer types or previously implicated in cancer, including CTNNB1 p.S29/Y30, EGFR p.S720, MAPK1 p.S142, and PTPN12 p.S275. In summary, systematic 3D clustering analysis highlights nearly 3,000 likely functional mutations and over 1000 cancer phosphosites for downstream investigation and evaluation of potential clinical relevance.


Subject(s)
Computational Biology/methods , Mutation , Neoplasms/genetics , Proteomics/methods , Binding Sites/genetics , Cluster Analysis , ErbB Receptors/metabolism , Humans , Mass Spectrometry/methods , Neoplasms/metabolism , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 12/metabolism , beta Catenin/metabolism
5.
Science ; 371(6534): 1154-1159, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33707263

ABSTRACT

Alterations of the mycobiota composition associated with Crohn's disease (CD) are challenging to link to defining elements of pathophysiology, such as poor injury repair. Using culture-dependent and -independent methods, we discovered that Debaryomyces hansenii preferentially localized to and was abundant within incompletely healed intestinal wounds of mice and inflamed mucosal tissues of CD human subjects. D. hansenii cultures from injured mice and inflamed CD tissues impaired colonic healing when introduced into injured conventionally raised or gnotobiotic mice. We reisolated D. hansenii from injured areas of these mice, fulfilling Koch's postulates. Mechanistically, D. hansenii impaired mucosal healing through the myeloid cell-specific type 1 interferon-CCL5 axis. Taken together, we have identified a fungus that inhabits inflamed CD tissue and can lead to dysregulated mucosal healing.


Subject(s)
Crohn Disease/microbiology , Crohn Disease/pathology , Debaryomyces/isolation & purification , Debaryomyces/physiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Amphotericin B/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Chemokine CCL5/metabolism , Colon/microbiology , Colon/pathology , Crohn Disease/immunology , Debaryomyces/growth & development , Female , Gastrointestinal Microbiome , Germ-Free Life , Humans , Ileum/microbiology , Ileum/pathology , Inflammation , Interferon Type I/metabolism , Intestinal Mucosa/immunology , Macrophages/immunology , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL
6.
J Immunol ; 204(4): 923-932, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31900338

ABSTRACT

The transcription factor BHLHE40 is an emerging regulator of the immune system. Recent studies suggest that BHLHE40 regulates type 2 immunity, but this has not been demonstrated in vivo. We found that BHLHE40 is required in T cells for a protective TH2 cell response in mice infected with the helminth Heligmosomoides polygyrus bakeri H. polygyrus elicited changes in gene and cytokine expression by lamina propria CD4+ T cells, many of which were BHLHE40 dependent, including production of the common ß (CSF2RB) chain family cytokines GM-CSF and IL-5. In contrast to deficiency in GM-CSF or IL-5 alone, loss of both GM-CSF and IL-5 signaling impaired protection against H. polygyrus Overall, we show that BHLHE40 regulates the TH2 cell transcriptional program during helminth infection to support normal expression of Csf2, Il5, and other genes required for protection and reveal unexpected redundancy of common ß chain-dependent cytokines previously thought to possess substantially divergent functions.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Homeodomain Proteins/metabolism , Interleukin-5/metabolism , Nematospiroides dubius/immunology , Strongylida Infections/immunology , Th2 Cells/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cytokine Receptor Common beta Subunit/genetics , Cytokine Receptor Common beta Subunit/metabolism , Disease Models, Animal , Female , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Homeodomain Proteins/genetics , Immunity, Cellular/drug effects , Immunity, Cellular/genetics , Interleukin-5/antagonists & inhibitors , Interleukin-5/genetics , Interleukin-5/immunology , Mice , Mice, Knockout , Mucous Membrane/cytology , Mucous Membrane/immunology , Mucous Membrane/metabolism , Strongylida Infections/parasitology , Th2 Cells/drug effects , Transcription, Genetic/immunology
7.
Cell ; 179(5): 1144-1159.e15, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31708126

ABSTRACT

The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hopx+ colitis-associated regenerative stem cell (CARSC) population that functionally contributes to mucosal repair in mouse models of colitis. Hopx+ CARSCs, enriched for fetal-like markers, transiently arose from hypertrophic crypts known to facilitate regeneration. Importantly, we established a long-term, self-organizing two-dimensional (2D) epithelial monolayer system to model the regenerative properties and responses of Hopx+ CARSCs. This system can reenact the "homeostasis-injury-regeneration" cycles of epithelial alterations that occur in vivo. Using this system, we found that hypoxia and endoplasmic reticulum stress, insults commonly present in inflammatory bowel diseases, mediated the cyclic switch of cellular status in this process.


Subject(s)
Cell Culture Techniques/methods , Colon/pathology , Stem Cells/pathology , 3T3 Cells , Animals , Colitis/pathology , Epithelial Cells/drug effects , Epithelial Cells/pathology , Homeodomain Proteins/metabolism , Mice , Models, Biological , Oxygen/pharmacology , Regeneration/drug effects , Stem Cells/drug effects , Stress, Physiological/drug effects
8.
Nat Immunol ; 20(6): 687-700, 2019 06.
Article in English | MEDLINE | ID: mdl-31061528

ABSTRACT

Most tissue-resident macrophage populations develop during embryogenesis, self-renew in the steady state and expand during type 2 immunity. Whether shared mechanisms regulate the proliferation of macrophages in homeostasis and disease is unclear. Here we found that the transcription factor Bhlhe40 was required in a cell-intrinsic manner for the self-renewal and maintenance of large peritoneal macrophages (LPMs), but not that of other tissue-resident macrophages. Bhlhe40 was necessary for the proliferation, but not the polarization, of LPMs in response to the cytokine IL-4. During infection with the helminth Heligmosomoides polygyrus bakeri, Bhlhe40 was required for cell cycling of LPMs. Bhlhe40 repressed the expression of genes encoding the transcription factors c-Maf and Mafb and directly promoted expression of transcripts encoding cell cycle-related proteins to enable the proliferation of LPMs. In LPMs, Bhlhe40 bound to genomic sites co-bound by the macrophage lineage-determining factor PU.1 and to unique sites, including Maf and loci encoding cell-cycle-related proteins. Our findings demonstrate a tissue-specific control mechanism that regulates the proliferation of resident macrophages in homeostasis and type 2 immunity.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Homeodomain Proteins/genetics , Homeostasis/genetics , Homeostasis/immunology , Immunity/genetics , Macrophages/immunology , Macrophages/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers , Cell Cycle/genetics , Cell Cycle/immunology , Cell Proliferation , Gene Expression Profiling , Gene Expression Regulation , Gene Knockout Techniques , Helicobacter Infections/genetics , Helicobacter Infections/immunology , Helicobacter pylori/immunology , Homeodomain Proteins/metabolism , Immunophenotyping , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Mice , Mice, Transgenic , Monocytes/immunology , Monocytes/metabolism , Organ Specificity/genetics , Organ Specificity/immunology , Transcriptome
9.
Sci Transl Med ; 11(482)2019 03 06.
Article in English | MEDLINE | ID: mdl-30842312

ABSTRACT

There is a major unmet clinical need to identify pathways in inflammatory bowel disease (IBD) to classify patient disease activity, stratify patients that will benefit from targeted therapies such as anti-tumor necrosis factor (TNF), and identify new therapeutic targets. In this study, we conducted global transcriptome analysis to identify IBD-related pathways using colon biopsies, which highlighted the coagulation gene pathway as one of the most enriched gene sets in patients with IBD. Using this gene-network analysis across 14 independent cohorts and 1800 intestinal biopsies, we found that, among the coagulation pathway genes, plasminogen activator inhibitor-1 (PAI-1) expression was highly enriched in active disease and in patients with IBD who did not respond to anti-TNF biologic therapy and that PAI-1 is a key link between the epithelium and inflammation. Functionally, PAI-1 and its direct target, the fibrinolytic protease tissue plasminogen activator (tPA), played an important role in regulating intestinal inflammation. Intestinal epithelial cells produced tPA, which was protective against chemical and mechanical-mediated colonic injury in mice. In contrast, PAI-1 exacerbated mucosal damage by blocking tPA-mediated cleavage and activation of anti-inflammatory TGF-ß, whereas the inhibition of PAI-1 reduced both mucosal damage and inflammation. This study identifies an immune-coagulation gene axis in IBD where elevated PAI-1 may contribute to more aggressive disease.


Subject(s)
Colitis/metabolism , Colitis/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Plasminogen Activator Inhibitor 1/metabolism , Animals , Biological Factors/pharmacology , Biological Factors/therapeutic use , Blood Coagulation , Cell Proliferation/drug effects , Citrobacter/drug effects , Colitis/immunology , Colitis/microbiology , Colon/pathology , Cytokines/metabolism , Inflammation/pathology , Inflammatory Bowel Diseases/blood , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology , Interleukin-17/metabolism , Mice , Severity of Illness Index , Small Molecule Libraries/pharmacology , Th17 Cells/immunology , Tissue Plasminogen Activator/metabolism , Transcription, Genetic , Transforming Growth Factor beta/metabolism
10.
Cell Host Microbe ; 24(3): 353-363.e5, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30122655

ABSTRACT

Colonic wound repair is an orchestrated process, beginning with barrier re-establishment and followed by wound channel formation and crypt regeneration. Elevated levels of prostaglandin E2 (PGE2) promote barrier re-establishment; however, we found that persistently elevated PGE2 hinders subsequent repair phases. The bacterial metabolite deoxycholate (DCA) promotes transition through repair phases via PGE2 regulation. During barrier re-establishment, DCA levels are locally diminished in the wound, allowing enhanced PGE2 production and barrier re-establishment. However, during transition to the wound channel formation phase, DCA levels increase to inhibit PGE2 production and promote crypt regeneration. Altering DCA levels via antibiotic treatment enhances PGE2 levels but impairs wound repair, which is rescued with DCA treatment. DCA acts via its receptor, farnesoid X receptor, to inhibit the enzyme cPLA2 required for PGE2 synthesis. Thus, colonic wound repair requires temporally regulated signals from microbial metabolites to coordinate host-associated signaling cascades. VIDEO ABSTRACT.


Subject(s)
Bacteria/metabolism , Colon/injuries , Colon/physiology , Deoxycholic Acid/metabolism , Gastrointestinal Microbiome/physiology , Intestinal Mucosa/injuries , Wound Healing , Animals , Biopsy , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Hydroxyprostaglandin Dehydrogenases/pharmacology , Intestinal Mucosa/physiology , Mice , Mice, Knockout , Nitrobenzenes/pharmacology , Primary Cell Culture , Sulfonamides/pharmacology , Vancomycin/pharmacology
11.
EMBO J ; 36(1): 5-24, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27797821

ABSTRACT

Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound-associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE2) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear ß-catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE2-Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE2 and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury.


Subject(s)
Cell Differentiation , Dinoprostone/metabolism , Epithelial Cells/physiology , Intestinal Mucosa/injuries , Intestinal Mucosa/physiology , Wound Healing , Animals , Mice , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Signal Transduction
12.
Hum Gene Ther ; 27(8): 631-42, 2016 08.
Article in English | MEDLINE | ID: mdl-27178525

ABSTRACT

Allergic airway inflammation driven by T helper 2 (Th2)-type immunity is characterized by airway hyperresponsiveness, eosinophilic infiltration, and elevated IgE production. Various novel strategies for managing asthma have been explored, such as DNA vaccines, T-cell peptides, and allergen-specific immunotherapy. A principal goal of most immunotherapeutic approaches is active and long-term allergen-specific tolerance. Liver-specific gene transfer using adeno-associated virus (AAV) has been shown to favorably induce tolerogenic responses to therapeutic products in various experimental models. AAV8 has strong liver tropism and induces immune tolerance in mice. The present study aimed to determine whether hepatocyte-specific allergen expression by pseudotyped AAV2/8 alleviates asthmatic symptoms in ovalbumin (OVA)-sensitized mice. Mice were intravenously injected with AAV2/8 vector carrying membrane-bound OVA transgene under transcriptional control of a hepatocyte-specific alpha 1 antitrypsin promoter (AAV2/8-OVA) and then sensitized with OVA. AAV2/8-OVA specifically transduced the OVA transgene in the liver. Airway hyperresponsiveness, eosinophilia, mucus hypersecretion, and Th2 cytokines were significantly suppressed in both the lungs and secondary lymphoid organs of asthmatic mice infected with AAV2/8-OVA. Significant reduction of OVA-specific antibodies was detected in the bronchoalveolar lavage fluid from AAV2/8-OVA-treated mice. Moreover, AAV2/8-OVA treatment prominently promoted the expression of Foxp3, IL-10, and TGF-ß in the liver. Enhanced Foxp3 expression was also detected in the lungs of asthmatic mice after AAV2/8-OVA treatment. Taken together, these results suggest that the induction of immune tolerance by hepatic AAV gene transfer may be beneficial for modulating allergic asthma.


Subject(s)
Allergens/immunology , Dependovirus/genetics , Genetic Therapy , Ovalbumin/genetics , Pneumonia/therapy , Respiratory Hypersensitivity/therapy , Allergens/genetics , Animals , Female , Genetic Vectors/administration & dosage , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Pneumonia/genetics , Respiratory Hypersensitivity/genetics
13.
J Immunol ; 193(3): 1258-67, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24973451

ABSTRACT

Hemorrhagic manifestations occur frequently accompanying a wide range of dengue disease syndromes. Much work has focused on the contribution of immune factors to the pathogenesis of hemorrhage, but how dengue virus (DENV) participates in the pathogenic process has never been explored. Although there is no consensus that apoptosis is the basis of vascular permeability in human dengue infections, we showed in dengue hemorrhage mouse model that endothelial cell apoptosis is important to hemorrhage development in mice. To explore the molecular basis of the contribution of DENV to endothelial cell death, we show in this study that DENV protease interacts with cellular IκBα and IκBß and cleaves them. By inducing IκBα and IκBß cleavage and IκB kinase activation, DENV protease activates NF-κB, which results in endothelial cell death. Intradermal inoculation of DENV protease packaged in adenovirus-associated virus-9 induces endothelial cell death and dermal hemorrhage in mice. Although the H51 activity site is not involved in the interaction between DENV protease and IκB-α/ß, the enzymatic activity is critical to the ability of DENV protease to induce IκBα and IκBß cleavage and trigger hemorrhage development. Moreover, overexpression of IκBα or IκBß protects endothelial cells from DENV-induced apoptosis. In this study, we show that DENV protease participates in the pathogenesis of dengue hemorrhage and discover IκBα and IκBß to be the new cellular targets that are cleaved by DENV protease.


Subject(s)
Apoptosis/immunology , Dengue/immunology , Endothelium, Vascular/immunology , Hemorrhage/immunology , I-kappa B Proteins/metabolism , NF-kappa B/antagonists & inhibitors , Serine Endopeptidases/metabolism , Animals , Antigens, Viral/metabolism , Antigens, Viral/physiology , Capillary Permeability/immunology , Cell Death/immunology , Cell Line , Dengue/enzymology , Dengue/pathology , Disease Models, Animal , Endothelium, Vascular/pathology , Endothelium, Vascular/virology , HEK293 Cells , Hemorrhage/pathology , Hemorrhage/virology , Humans , Mice , Mice, Inbred C57BL , NF-KappaB Inhibitor alpha , NF-kappa B/metabolism , Serine Endopeptidases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...