Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Chemphyschem ; : e202400330, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676545

ABSTRACT

Copper is widely used in everyday life and industrial production because of its good electrical and thermal conductivity. To overcome copper oxidation and maintain its good physical properties, small organic molecules adsorbed on the surface of copper make a passivated layer to further avoid copper corrosion. In this work, we have investigated thioglycolic acid (TGA, another name is mercaptoacetic acid) adsorbed on copper surfaces by using density functional theory (DFT) calculations and a periodical slab model. We first get five stable adsorption structures, and the binding interaction between TGA and Cu(111) surfaces by using density of states (DOS), indicating that the most stable configuration adopts a triple-end binding model. Then, we analyze the vibrational Raman spectra of TGA adsorbed on the Cu(111) surface and make vibrational assignments according to the vibrational vectors. Finally, we explore the temperature effect of the thermodynamically Gibbs free energy of TGA on the Cu(111) surface and the antioxidant ability of the small organic molecular layer of copper oxidation on the copper surface. Our calculated results further provide evidences to interpret the stability of adsorption structures and antioxidant properties of copper.

2.
Front Plant Sci ; 15: 1336129, 2024.
Article in English | MEDLINE | ID: mdl-38425796

ABSTRACT

Plant Elicitor Peptides (Peps) induce plant immune responses and inhibit root growth through their receptors PEPR1 and PEPR2, two receptor-like kinases. In our study, we found a previously unknown function of Peps that enhance root hair growth in a PEPRs-independent manner. When we characterized the expression patterns of PROPEP genes, we found several gene promoters of PROPEP gene family were particularly active in root hairs. Furthermore, we observed that PROPEP2 is vital for root hair development, as disruption of PROPEP2 gene led to a significant reduction in root hair density and length. We also discovered that PROPEP2 regulates root hair formation via the modulation of CPC and GL2 expression, thereby influencing the cell-fate determination of root hairs. Additionally, calcium signaling appeared to be involved in PROPEP2/Pep2-induced root hair growth. These findings shed light on the function of Peps in root hair development.

3.
Int Immunopharmacol ; 129: 111559, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38330794

ABSTRACT

Antibiotic-resistant Serratia marcescens (Sm) is known to cause bloodstream infections, pneumonia, etc. The nod-like receptor family, pyrin domain-containing 3 (NLRP3), has been implicated in various lung infections. Yet, its role in Sm-induced pneumonia was not well understood. In our study, we discovered that deletion of Nlrp3 in mice significantly improved Sm-induced survival rates, reduced bacterial loads in the lungs, bronchoalveolar lavage fluid (BALF), and bloodstream, and mitigated the severity of acute lung injury (ALI) compared to wild-type (WT) mice. Mechanistically, we observed that 24 h post-Sm infection, NLRP3 inflammasome activation occurred, leading to gasdermin D NH2-terminal (GSDMD-NT)-induced pyroptosis in macrophages and IL-1ß secretion. The NLRP3 or NLRP3 inflammasome influenced the expression PD-L1 and PD-1, as well as the count of PD-L1 or PD-1-expressing macrophages, alveolar macrophages, interstitial macrophages, PD-L1-expressing neutrophils, and the count of macrophage receptors with collagenous structure (MARCO)-expressing macrophages, particularly MARCO+ alveolar macrophages. The frequency of MARCO+ alveolar macrophages, PD-1 expression, particularly PD-1+ interstitial macrophages were negatively or positively correlated with the Sm load, respectively. Additionally, IL-1ß levels in BALF correlated with three features of acute lung injury: histologic score, protein concentration and neutrophil count in BALF. Consequently, our findings suggest that Nlrp3 deletion offers protection agaisnt acute Sm pneumonia in mice by inhibiting inflammasome activation and reducing Sm infection-induced PD-L1/PD-1 or MARCO expression, particularly in macrophages. This highlights potential therapeutic targets for Sm and other gram-negative bacteria-induced acute pneumonia.


Subject(s)
Acute Lung Injury , Pneumonia , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Programmed Cell Death 1 Receptor/metabolism , Serratia marcescens/genetics , Serratia marcescens/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Pneumonia/metabolism , Macrophages/metabolism , Acute Lung Injury/chemically induced , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Mice, Knockout
4.
PhytoKeys ; 237: 79-89, 2024.
Article in English | MEDLINE | ID: mdl-38282985

ABSTRACT

Aletrisguangxiensis Y. Nong & Y. F. Huang (Nartheciaceae), a new species from Guangxi, China, is described and illustrated. This new species is most similar to A.scopulorum, but it can be easily distinguished by its sparsely glandular, 5-18 cm long scape, glandular inflorescence axis, distinctly pedicellate flowers, sparsely glandular, 5-10 mm long pedicel, bract borne at base of pedicel, glabrous perianth divided to the base, strongly recurved or revolute perianth lobes and turbinate, obovoid to oblong-obovoid capsule. An identification key for 24 species and 1 hybrid of Aletris is also provided.

5.
STAR Protoc ; 4(3): 102550, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37660297

ABSTRACT

Quantitative assessment of endogenously synthesized and released bilirubin from brain tissue remains a challenge. Here, we present a sensitive and reproducible experimental paradigm to quantify, in real time, unconjugated bilirubin (UCB) from isolated murine brain tissue during oxygen-glucose deprivation (OGD). We describe steps for perfusion, brain dissection, brain slice preparation and incubation, glucose depletion, and OGD processing. We then detail procedures for standard calibration plotting and sample UCB measurement. For complete details on the use and execution of this protocol, please refer to Liu et al.1.


Subject(s)
Glucose , Oxygen , Mice , Animals , Bilirubin , Brain , Head
6.
J Ethnopharmacol ; 312: 116454, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37059246

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Polyrhachis vicina Roger (P. vicina), a traditional Chinese medicinal animal, has been used to treat rheumatoid arthritis, hepatitis, cancer, and other conditions. Due to its anti-inflammatory properties, our previous pharmacological investigations have demonstrated that it is effective against cancer, depression, and hyperuricemia. Nevertheless, the key active components and targets of P. vicina in cancers are still unexplored. AIM OF THE STUDY: The study aimed to evaluate the pharmacological treatment mechanism of the active fraction of P. vicina (AFPR) in treating colorectal cancer (CRC) and to further reveal its active ingredients and key targets. METHODS: To examine the inhibitory impact of AFPR on CRC growth, tumorigenesis assays, cck-8 assays, colony formation assays, and MMP detection were utilized. The primary components of AFPR were identified by GC-MS analysis. The network pharmacology, molecular docking, qRT-PCR, western blotting, CCK-8 assays, colony formation assay, Hoechst staining, Annexin V-FITC/PI double staining, and MMP detection were performed to pick out the active ingredients and potential key targets of AFPR. The function of Elaidic acid on necroptosis was investigated through siRNA interference and the utilization of inhibitors. Elaidic acid's effectiveness to suppress CRC growth in vivo was assessed using a tumorigenesis experiment. RESULTS: Studies confirmed that AFPR prevented CRC from growing and evoked cell death. Elaidic acid was the main bioactive ingredient in AFPR that targeted ERK. Elaidic acid greatly affected the ability of SW116 cells to form colonies, produce MMP, and undergo necroptosis. Additionally, Elaidic acid promoted necroptosis predominantly by activating ERK/RIPK1/RIPK3/MLKL. CONCLUSION: According to our findings, Elaidic acid is the main active component of AFPR, which induced necroptosis in CRC through the activation of ERK. It represents a promising alternative therapeutic option for CRC. This work provided experimental support for the therapeutic application of P. vicina Roger in the treatment of CRC.


Subject(s)
Colorectal Neoplasms , Necroptosis , Animals , Molecular Docking Simulation , Sincalide , Colorectal Neoplasms/drug therapy , Carcinogenesis
7.
FEBS J ; 290(16): 4092-4106, 2023 08.
Article in English | MEDLINE | ID: mdl-37059697

ABSTRACT

Neuronal excitability is a critical feature of central nervous system development, playing a fundamental role in the functional maturation of brain regions, including the hippocampus, cerebellum, auditory and visual systems. The present study aimed to determine the mechanism by which hypoxia causes brain dysfunction through perturbation of neuronal excitability in a hypoxic neonatal mouse model. Functional brain development was assessed in humans using the Gesell Development Diagnosis Scale. In mice, gene transcription was evaluated via mRNA sequencing and quantitative PCR; furthermore, patch clamp recordings assessed potassium currents. Clinical observations revealed disrupted functional brain development in 6- and 18-month-old hypoxic neonates, and those born with normal hearing screening unexpectedly exhibited impaired central auditory function at 3 months. In model mice, CA1 pyramidal neurons exhibited reduced spontaneous activity, largely induced by excitatory synaptic input suppression, despite the elevated membrane excitability of hypoxic neurons compared to that of control neurons. In hypoxic neurons, Kcnd3 gene transcription was upregulated, confirming upregulated hippocampal Kv 4.3 expression. A-type potassium currents were enhanced, and Kv 4.3 participated in blocking excitatory presynaptic inputs. Elevated Kv 4.3 activity in pyramidal neurons under hypoxic conditions inhibited excitatory presynaptic inputs and further decreased neuronal excitability, disrupting functional brain development in hypoxic neonates.


Subject(s)
Neurons , Potassium Channels , Humans , Mice , Animals , Infant , Animals, Newborn , Up-Regulation , Neurons/physiology , Hippocampus/physiology , Hypoxia/genetics
8.
Neuron ; 111(10): 1609-1625.e6, 2023 05 17.
Article in English | MEDLINE | ID: mdl-36921602

ABSTRACT

Stroke prognosis is negatively associated with an elevation of serum bilirubin, but how bilirubin worsens outcomes remains mysterious. We report that post-, but not pre-, stroke bilirubin levels among inpatients scale with infarct volume. In mouse models, bilirubin increases neuronal excitability and ischemic infarct, whereas ischemic insults induce the release of endogenous bilirubin, all of which are attenuated by knockout of the TRPM2 channel or its antagonist A23. Independent of canonical TRPM2 intracellular agonists, bilirubin and its metabolic derivatives gate the channel opening, whereas A23 antagonizes it by binding to the same cavity. Knocking in a loss of binding point mutation for bilirubin, TRPM2-D1066A, effectively antagonizes ischemic neurotoxicity in mice. These findings suggest a vicious cycle of stroke injury in which initial ischemic insults trigger the release of endogenous bilirubin from injured cells, which potentially acts as a volume neurotransmitter to activate TRPM2 channels, aggravating Ca2+-dependent brain injury.


Subject(s)
Stroke , TRPM Cation Channels , Animals , Mice , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Bilirubin/metabolism , Mice, Knockout , Brain/metabolism , Infarction , Calcium/metabolism
9.
Food Res Int ; 164: 112344, 2023 02.
Article in English | MEDLINE | ID: mdl-36737936

ABSTRACT

Hypertrophy of adipose tissues and dysbiosis are hallmarks of obesity. Although drugs are applied for obesity treatment, side effects limit their use. The anti-obesity capacity of rosmarinic acid (RA) has been documented. Trichodesma khasianum Clarke is an edible RA-rich plant grown in Taiwan. Our previous study found that an 80 % ethanol extract of T. khasianum Clarke leaves (80EETC) ameliorates gastric mucosal damage through its anti-inflammatory, antioxidant, and microbiota modulation abilities. However, the anti-obesity effect of 80EETC remains unclear. Therefore, the objective of this study was to explore the protective effects of low-dose 80EETC (125 mg/kg b.w., 80EETCL) or high-dose 80EETC (250 mg/kg b.w., 80EETCH) on obesity development through gut microbiota modulation in high-fat diet (HFD)-induced C57BL/6 mice. The results showed a high RA content (89.2 ± 7.4 mg/g) in 80EETC. 80EETC administration significantly decreased body weight, body fat ratio, serum lipid levels (TC, TG, and LDL-C), adipose tissue accumulation, malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α) in HFD-fed mice. Furthermore, supplementation with 80EETC reduced the Firmicutes/Bacteroidetes ratio and enhanced the relative abundance of gut microbiota (p_Bacteroidetes, f_Lactobacillus, f_Muribaculaceae, f_Prevotellaceae, g_Lactobacillus, g_Prevotellaceae_NK3B31_group, g_Ruminococcaceae_UCG-013, and g_Ruminococcaceae_UCG-014), which negatively correlated with obesity-related factors such as body weight, energy intake, fat accumulation in adipose tissue, TC, TG, LDL, and MDA. In conclusion, RA-rich 80EETC had a protective effect against obesity development and it has potential in healthy food applications.


Subject(s)
Diet, High-Fat , Microbiota , Mice , Animals , Mice, Obese , Diet, High-Fat/adverse effects , Dysbiosis/drug therapy , Mice, Inbred C57BL , Obesity/drug therapy , Body Weight , Bacteroidetes , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rosmarinic Acid
10.
J Biosci Bioeng ; 135(3): 232-237, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36693775

ABSTRACT

The microparticle-enhanced cultivation (MPEC) was used to enhance the production of Antrodin C by submerged fermentation of medicinal mushroom Antrodia cinnamomea. The crucial factors such as types, sizes, concentrations, and addition time of microparticles were optimized. The mechanism of MPEC on the membrane permeability and fluidity of A. cinnamomea and the expression of key genes in Antrodin C were investigated. When talc (18 µm, 2 g/L) was added into the fermentation liquid at 0 h, the promoting effect on Antrodin C was the best. The maximum yield of Antrodin C was 1615.7 mg/L, which was about 2.98 times of the control (541.7 mg/L). Talc slightly damaged the mycelia of A. cinnamomea, increased the release of intracellular constituents, and enhanced the index of unsaturated fatty acid. In addition, the key genes (IDI, E2.3.3.10, HMGCR, atoB) that might play an important role in the synthesis of the triquine-type sesquiterpene Antrodin C, were upregulated. In conclusion, talc increased the permeability and fluidity of cell membrane, upregulated the key genes and improved the biosynthesis process to enhance the yield of Antrodin C in the submerged fermentation of A. cinnamomea.


Subject(s)
Agaricales , Antrodia , Talc/metabolism , Antrodia/genetics , Antrodia/metabolism
11.
Analyst ; 147(24): 5732-5738, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36394571

ABSTRACT

In this study, a simple and facile procedure using the all or none formation of double-stranded DNA-templated copper nanoclusters on specific-primer PCR fragments was designed to fluorescently identify the T315I single nucleotide variant on the BCR-ABL1 gene. Chronic myeloid leukaemia (CML), a disease caused by the BCR-ABL1 fusion of tyrosine kinase, is well known for the T315I mutation that causes tyrosine kinase inhibitors (TKIs) to be resisted due to the alternative structure of the drug-binding site. Therefore, it is an important single nucleotide variant for clinical detection. In this study, only specific functional primers and the digestion of the wild genotype from the T315I mutation site with specific restriction enzymes were designed, and the different digested products could then be captured using magnetic beads. The final products would allow for fluorescent sensing via the all or none formation of double-stranded DNA-templated copper nanoclusters for the detection of the T315I mutation. This study has been successfully applied for identifying wild and mutant homozygotes and the mutant/wild heterozygote of the T315I mutation. It is expected that this analytical system can serve as a tool for the clinical diagnosis of T315I mutations and be applied to real samples of CML patients in the future.


Subject(s)
Copper , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Polymerase Chain Reaction , Fusion Proteins, bcr-abl/genetics , Coloring Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Nucleotides , Magnetic Phenomena
12.
Front Cell Neurosci ; 16: 1002671, 2022.
Article in English | MEDLINE | ID: mdl-36385944

ABSTRACT

Hepatic encephalopathy (HE)-a major complication of liver disease-has been found to increase the risk of olfactory dysfunction, which may be attributed to elevated levels of ammonia/ammonium in the blood and cerebrospinal fluid. However, the cellular mechanisms underlying hyperammonemia-induced olfactory dysfunction remain unclear. By performing patch-clamp recordings of mitral cells (MCs) in the mouse olfactory bulb (OB), we found that 3 mM ammonium (NH4 +) increased the spontaneous firing frequency and attenuated the amplitude, but synaptic blockers could prevent the changes, suggesting the important role of glutamate receptors in NH4 +-induced hyperexcitability of MCs. We also found NH4 + reduced the currents of voltage-gated K+ channel (Kv), which may lead to the attenuation of spontaneous firing amplitude by NH4 +. Further studies demonstrated NH4 + enhanced the amplitude and integral area of long-lasting spontaneous excitatory post-synaptic currents (sEPSCs) in acute OB slices. This enhancement of excitatory neurotransmission in MCs occurred independently of pre-synaptic glutamate release and re-uptake, and was prevented by the exocytosis inhibitor TAT-NSF700. In addition, an NH4 +-induced increasement in expression of NR1 and GluR1 was detected on cytoplasmic membrane, indicating that increased trafficking of glutamate receptors on membrane surface in MCs is the core mechanism. Moreover, NH4 +-induced enhanced activity of glutamate receptors in acute OB slices caused cell death, which was prevented by antagonizing glutamate receptors or chelating intracellular calcium levels. Our study demonstrates that the enhancement of the activity and recruitment of glutamate receptor directly induces neuronal excitotoxicity, and contributes to the vulnerability of OB to acute hyperammonemia, thus providing a potential pathological mechanism of olfactory defects in patients with hyperammonemia and HE.

13.
Allergy Asthma Immunol Res ; 14(5): 505-527, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36174993

ABSTRACT

PURPOSE: Neutrophilic asthma is associated with asthma exacerbation, steroid insensitivity, and severe asthma. Interleukin (IL)-24 is overexpressed in asthma and is involved in the pathogenesis of several allergic inflammatory diseases. However, the role and specific mechanism of IL-24 in neutrophilic asthma are unclear. We aimed to elucidate the roles of IL-24 and IL-37 in neutrophilic asthma, the relationships with IL-17A and the mechanisms regulating neutrophilic asthma progression. METHODS: Purified human neutrophils were isolated from healthy volunteers, and a cell coculture system was used to evaluate the function of IL-24 in epithelium-derived IL-17A-dependent neutrophil migration. IL-37 or a small interfering RNA (siRNA) targeting IL-24 was delivered intranasally to verify the effect in a murine model of house dust mite (HDM)/lipopolysaccharide (LPS)-induced neutrophilic asthma. RESULTS: IL-24 enhanced IL-17A production in bronchial epithelial cells via the STAT3 and ERK1/2 signaling pathways; this effect was reversed by exogenous IL-37. Anti-IL-17A monoclonal antibodies reduced neutrophil chemotaxis induced by IL-24-treated epithelial cells in vitro. Increased IL-24 and IL-17A expression in the airway epithelium was observed in HDM/LPS-induced neutrophilic asthma. IL-37 administration or IL-24 silencing attenuated neutrophilic asthma, reducing IL-17A levels and decreasing neutrophil airway infiltration, airway hyperresponsiveness, and goblet cell metaplasia. Silencing IL-24 inhibited T-helper 17 (Th17) immune responses, but not Th1 or Th2 immune responses, in the lungs of a neutrophilic asthma model. CONCLUSIONS: IL-24 aggravated neutrophilic airway inflammation by increasing epithelium-derived IL-17A production, which could be suppressed by IL-37. Targeting the IL-24/IL-17A signaling axis is a potential strategy, and IL-37 is a potential candidate agent for alleviating neutrophilic airway inflammation in asthma.

15.
Allergy Asthma Proc ; 43(3): 209-219, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35524352

ABSTRACT

Background: Cough is often the most prominent and intractable symptom reported by patients with asthma, but few studies have explored the characteristics of patients with asthma and with chronic cough (CC) in a real-world setting. Methods: In a prospective cohort study, patients ages ≥ 18 years with stable asthma were consecutively recruited at the West China Hospital, Sichuan University. The patients were classified as having asthma with CC (the CC group) or asthma with non-CC (the non-CC group) after 3 months of optimized asthma therapy according to standard guidelines. Multidimensional assessment was performed at baseline, followed by a 12-month follow-up to assess asthma exacerbations. Results: Of 323 patients with asthma, 127 patients were assigned to the CC group and 196 patients were assigned to the non-CC group. The participants with CC were older and had more airflow obstruction; worse asthma control and quality of life; increased airway inflammation; upper respiratory tract infection as a trigger; and more comorbidities, such as psychological dysfunction, rhinitis, chronic obstructive pulmonary disease, and bronchiectasis. They reported greater work productivity loss and daily activity impairment, and increased moderate-to-severe exacerbations. Conclusion: The participants with asthma and with CC had a significant disease burden, with increased exacerbations, health-care utilization, and impaired work productivity and daily activity. These observations indicated potential clinical implications in patients with asthma and with CC, and call for more attention to this aspect of asthma.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Adolescent , Asthma/complications , Asthma/diagnosis , Asthma/epidemiology , Chronic Disease , Cough/diagnosis , Cough/epidemiology , Humans , Inflammation/complications , Inflammation/epidemiology , Lung , Prospective Studies , Quality of Life
16.
iScience ; 25(1): 103641, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35028531

ABSTRACT

Chronic cough is a common refractory symptom of various respiratory diseases. However, the neural mechanisms that modulate the cough sensitivity and mediate chronic cough remain elusive. Here, we report that GABAergic neurons in the lateral/ventrolateral periaqueductal gray (l/vlPAG) suppress cough processing via a descending pathway. We found that l/vlPAG neurons are activated by coughing-like behaviors and that tussive agent-evoked coughing-like behaviors are impaired after activation of l/vlPAG neurons. In addition, we showed that l/vlPAG neurons form inhibitory synapses with the nucleus of the solitary tract (NTS) neurons. The synaptic strength of these inhibitory projections is weaker in cough hypersensitivity model mice than in naïve mice. Important, activation of l/vlPAG GABAergic neurons projecting to the NTS decreases coughing-like behaviors. In contrast, suppressing these neurons enhances cough sensitivity. These results support the notion that l/vlPAG GABAergic neurons play important roles in cough hypersensitivity and chronic cough through disinhibition of cough processing at the medullary level.

17.
Drug Des Devel Ther ; 15: 4885-4899, 2021.
Article in English | MEDLINE | ID: mdl-34880599

ABSTRACT

OBJECTIVE: Inhibition of tumor metastasis is a useful strategy to improve the efficacy of cancer therapy. Ventilagolin, a natural 1, 4-naphthoquinone derivative extracted from Ventilago leiocarpa Benth, has shown promising antitumor effects in previous studies. However, the effects and underlying mechanisms of Ventilagolin against migration, invasion and epithelial-mesenchymal transition (EMT) of hepatocellular carcinoma (HCC) remain unclear. The present study has examined these effects and determined whether the proto-oncogene Pim-1 is involved. METHODS: The effects of Ventilagolin on migration, invasion, Pim-1 and EMT-related proteins (eg, E-cadherin, N-cadherin, Vimentin) expression were assessed by scratch wound healing, Transwell, qRT-PCR and Western blot assays, respectively. Pim-1 stably overexpressed HepG2 and SMMC-7721 cells were generated to explore whether Ventilagolin inhibited migration, invasion and EMT of HCC cells via regulating Pim-1. Subcutaneous xenograft tumor model in nude mice was established. Histopathological changes of tumor tissues were examined by H&E staining and expressions of Pim-1 and EMT-related proteins were detected by immunohistochemistry. RESULTS: Ventilagolin significantly (P < 0.01) reduced the expression of Pim-1 levels in HepG2 and SMMC-7721 cells. Compared with the control group, the migration and invasion abilities of Pim-1-overexpressing HepG2 and SMMC-7721 cells were significantly (P < 0.05, P < 0.01) enhanced, the expression of E-cadherin was decreased (P < 0.01), and the levels of N-cadherin and Vimentin were upregulated (P < 0.05, P < 0.01). Ventilagolin treatment effectively reversed these effects of Pim-1 overexpression. In vivo experiments showed that Ventilagolin could effectively suppress HCC tumor growth, downregulate Pim-1, N-cadherin and Vimentin expression, and upregulate E-cadherin expression. CONCLUSION: Ventilagolin suppresses HCC cell proliferation, migration and invasion and reverses EMT process by downregulating Pim-1, suggesting Ventilagolin is a potential therapeutic agent for treatment of HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Epithelial-Mesenchymal Transition/drug effects , Liver Neoplasms/drug therapy , Naphthoquinones/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Drug Screening Assays, Antitumor , Female , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Naphthoquinones/chemistry , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured , Wound Healing/drug effects
18.
J Med Food ; 24(4): 348-357, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33861937

ABSTRACT

Chronic cough is very common in respiratory clinics, and no effective drugs are available. Schisandra chinensis (Turcz.) Baill. (S. chinensis), an important traditional Chinese medicine, has been extensively prescribed for patients with a persistent cough. Preliminary research indicated that 95% ethanol extracts (EE) of S. chinensis showed remarkable antitussive activity in guinea pigs exposed to cigarette smoke (CS). To find out the antitussive ingredients of S. chinensis, EE was divided into four fractions according to the polarity: petroleum ether extract (PEE), ethyl acetate extract (ECE), n-butyl alcohol extract, and residue extract. The antitussive, antioxidant, and anti-inflammatory effects of the four fractions were evaluated in a guinea pig model of cough hypersensitivity induced by CS exposure. Eighteen main constituents of the two effective fractions, PEE and ECE, were identified using ultra-high-pressure liquid chromatography electronic spray ion time-of-flight mass spectrometry. The cough inhibition activities of compound 1, 3, 9, 10, 17 were evaluated on citric acid induced acute cough guinea pigs. The results showed that the antitussive activity of EE was almost all contained in PEE and ECE. The 16 major peaks in PEE were identified as 15 lignans (1-12 and 14-16) and 1 triterpene (compound 13), and 3 major peaks (1, 17, and 18) in ECE were also identified as lignans. Three doses of five compounds brought about a significant decrease in number of cough efforts (P < .01), and the cough inhibition rates were between 40.9% and 85.1%. Therefore, lignans are the antitussive ingredients of S. chinensis.


Subject(s)
Antitussive Agents , Lignans , Schisandra , Animals , Chromatography, High Pressure Liquid , Cough/chemically induced , Cough/drug therapy , Guinea Pigs , Humans , Lignans/analysis
19.
Biotechnol Bioeng ; 118(7): 2503-2513, 2021 07.
Article in English | MEDLINE | ID: mdl-33755193

ABSTRACT

Morphology plays an important role in fungal fermentation and secondary metabolites biosynthesis. One novel technique, microparticle-enhanced cultivation was successfully utilized to control the morphology of Monascus purpureus precisely and enhance the yield of yellow pigments. The production of yellow pigments increased to 554.2 U/ml when 4 g/L 5000 mesh talc added at 24 h. Field emission scanning electron microscope observation indicated that the actual effect depends on the properties of microparticle. Sharp-edged microparticles showed better stimulatory effects than smooth, round-shaped ones. Particle size analysis, scanning electron microscope, and cell integrity evaluation proved obvious morphological changes were induced by talc addition, including smaller mycelial size, rougher hyphae, and decreased cell integrity. Furthermore, the expression levels of MrpigG, MrpigD, MrpigE, and MrpigH were significantly upregulated by the addition of talc. It indicated that the microparticle could not only affect the mycelial morphology, but also influence the expression levels of key genes in biosynthetic pathway of Monascus yellow pigments.


Subject(s)
Gene Expression Regulation, Fungal , Hyphae/growth & development , Monascus/growth & development , Pigments, Biological/biosynthesis
20.
Exp Lung Res ; 47(2): 78-86, 2021.
Article in English | MEDLINE | ID: mdl-33238771

ABSTRACT

PURPOSE: The regulation effect and mechanism of respiratory syncytial virus (RSV) infection on the expression of tachykinin substance P (SP) in airway epithelial cells was investigated. METHODS: The regulation of SP expression by RSV was investigated in the BEAS-2B airway epithelial cell line. RT-qPCR, immunofluorescence, and ELISA assay were used to examine the expression of the SP encoding gene TAC1, the intracellular SP protein expression, and the extracellular SP secretion. RESULTS: The mRNA expression of TAC1 and the intracellular SP protein level in BEAS-2B cells were significantly enhanced by RSV infection with multiplicity of infection (MOI) values of both 1 and 0.1 at 48 hours post infection. Heat-inactivated and UV-inactivated RSV, but not live RSV, significantly induced SP secretion in both control BEAS-2B cells and CX3CR1 receptor knockout cells without affecting the TAC1 gene expression or cell viability. RSV G protein (2-10 µg/ml) and fractalkine (10-50 ng/ml), both CX3CR1 receptor ligands, did not affect SP secretion in BEAS-2B cells. Inhibition of STAT1 phosphorylation by fludarabine (1 µM) markedly reduced the RSV-induced TAC1 gene expression and antagonized the inhibition of RSV replication by interferon-α in BEAS-2B cells. CONCLUSIONS: STAT1 participates in RSV infection-induced SP expression in airway epithelial cells.


Subject(s)
Epithelial Cells/virology , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , STAT1 Transcription Factor , Humans , Respiratory System , Substance P
SELECTION OF CITATIONS
SEARCH DETAIL
...