Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Emerg Microbes Infect ; 13(1): 2352520, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38713593

ABSTRACT

Vaginal transmission from semen of male Ebola virus (EBOV) survivors has been implicated as a potential origin of Ebola virus disease (EVD) outbreaks. While EBOV in semen must traverse cervicovaginal mucus (CVM) to reach target cells, the behaviour of EBOV in CVM is poorly understood. CVM contains substantial quantities of IgG, and arrays of IgG bound to a virion can develop multiple Fc-mucin bonds, immobilizing the IgG/virion complex in mucus. Here, we measured the real-time mobility of fluorescent Ebola virus-like-particles (VLP) in 50 CVM specimens from 17 women, with and without ZMapp, a cocktail of 3 monoclonal IgGs against EBOV. ZMapp-mediated effective trapping of Ebola VLPs in CVM from a subset of women across the menstrual cycle, primarily those with Lactobacillus crispatus dominant microbiota. Our work underscores the influence of the vaginal microbiome on IgG-mucin crosslinking against EBOV and identifies bottlenecks in the sexual transmission of EBOV.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Vagina , Humans , Female , Ebolavirus/physiology , Vagina/virology , Hemorrhagic Fever, Ebola/virology , Hemorrhagic Fever, Ebola/transmission , Virion , Immunoglobulin G , Adult , Cervix Mucus/virology , Mucus/virology
2.
ACS Nano ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767983

ABSTRACT

In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.

3.
ACS Nano ; 18(12): 8733-8744, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38469811

ABSTRACT

Covalent conjugation of poly(ethylene glycol) (PEG) is frequently employed to enhance the pharmacokinetics and biodistribution of various protein and nanoparticle therapeutics. Unfortunately, some PEGylated drugs can induce elevated levels of antibodies that can bind PEG, i.e., anti-PEG antibodies (APA), in some patients. APA in turn can reduce the efficacy and increase the risks of allergic reactions, including anaphylaxis. There is currently no intervention available in the clinic that specifically mitigates allergic reactions to PEGylated drugs without the use of broad immunosuppression. We previously showed that infusion of high molecular weight free PEG could safely and effectively suppress the induction of APA in mice and restore prolonged circulation of various PEGylated therapeutics. Here, we explored the effectiveness of free PEG as a prophylaxis against anaphylaxis induced by PEG-specific allergic reactions in swine. Injection of PEG-liposomes (PL) resulted in anaphylactoid shock (pseudoanaphylaxis) within 1-3 min in both naïve and PL-sensitized swine. In contrast, repeated injection of free PEG alone did not result in allergic reactions, and injection of free PEG effectively suppressed allergic reactions to PL, including in previously PL-sensitized swine. These results strongly support the further investigation of free PEG for reducing APA and allergic responses to PEGylated therapeutics.


Subject(s)
Anaphylaxis , Humans , Animals , Swine , Mice , Anaphylaxis/chemically induced , Anaphylaxis/drug therapy , Anaphylaxis/prevention & control , Tissue Distribution , Nanomedicine , Polyethylene Glycols/pharmacology , Antibodies/metabolism , Liposomes/pharmacology
4.
Article in English | MEDLINE | ID: mdl-38460680

ABSTRACT

BACKGROUND: Systemic allergic reactions (sARs) following coronavirus disease 2019 (COVID-19) mRNA vaccines were initially reported at a higher rate than after traditional vaccines. OBJECTIVE: We aimed to evaluate the safety of revaccination in these individuals and to interrogate mechanisms underlying these reactions. METHODS: In this randomized, double-blinded, phase 2 trial, participants aged 16 to 69 years who previously reported a convincing sAR to their first dose of COVID-19 mRNA vaccine were randomly assigned to receive a second dose of BNT162b2 (Comirnaty) vaccine and placebo on consecutive days in a blinded, 1:1 crossover fashion at the National Institutes of Health. An open-label BNT162b2 booster was offered 5 months later if the second dose did not result in severe sAR. None of the participants received the mRNA-1273 (Spikevax) vaccine during the study. The primary end point was recurrence of sAR following second dose and booster vaccination; exploratory end points included biomarker measurements. RESULTS: Of 111 screened participants, 18 were randomly assigned to receive study interventions. Eight received BNT162b2 second dose followed by placebo; 8 received placebo followed by BNT162b2 second dose; 2 withdrew before receiving any study intervention. All 16 participants received the booster dose. Following second dose and booster vaccination, sARs recurred in 2 participants (12.5%; 95% CI, 1.6 to 38.3). No sAR occurred after placebo. An anaphylaxis mimic, immunization stress-related response (ISRR), occurred more commonly than sARs following both vaccine and placebo and was associated with higher predose anxiety scores, paresthesias, and distinct vital sign and biomarker changes. CONCLUSIONS: Our findings support revaccination of individuals who report sARs to COVID-19 mRNA vaccines. Distinct clinical and laboratory features may distinguish sARs from ISRRs.

5.
Adv Sci (Weinh) ; 11(12): e2306729, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225749

ABSTRACT

Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants, the immunocompromised, and the elderly. RSV infects the airway epithelium via the apical membrane and almost exclusively sheds progeny virions back into the airway mucus (AM), making RSV difficult to target by systemically administered therapies. An inhalable "muco-trapping" variant of motavizumab (Mota-MT), a potent neutralizing mAb against RSV F is engineered. Mota-MT traps RSV in AM via polyvalent Fc-mucin bonds, reducing the fraction of fast-moving RSV particles in both fresh pediatric and adult AM by ≈20-30-fold in a Fc-glycan dependent manner, and facilitates clearance from the airways of mice within minutes. Intranasal dosing of Mota-MT eliminated viral load in cotton rats within 2 days. Daily nebulized delivery of Mota-MT to RSV-infected neonatal lambs, beginning 3 days after infection when viral load is at its maximum, led to a 10 000-fold and 100 000-fold reduction in viral load in bronchoalveolar lavage and lung tissues relative to placebo control, respectively. Mota-MT-treated lambs exhibited reduced bronchiolitis, neutrophil infiltration, and airway remodeling than lambs receiving placebo or intramuscular palivizumab. The findings underscore inhaled delivery of muco-trapping mAbs as a promising strategy for the treatment of RSV and other acute respiratory infections.


Subject(s)
Antibodies, Monoclonal , Respiratory Syncytial Virus Infections , Humans , Infant , Child , Animals , Sheep , Mice , Aged , Antibodies, Monoclonal/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Palivizumab/therapeutic use , Respiratory Syncytial Viruses , Lung
6.
J Control Release ; 366: 342-348, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182056

ABSTRACT

Polyethylene glycol (PEG) is frequently used in various protein and nanomedicine therapeutics. However, various studies have shown that select PEGylated therapeutics can induce production of anti-PEG antibodies (APA), potentially culminating in rapid clearance from the systemic circulation, loss of efficacy and possibly increased risks of allergic reactions. Although IgE is a frequent cause of immediate hypersensitivity reactions (IHR), the role of IgE APA in PEG-related IHR is not well understood, due in part to a lack of standardized assays for measuring IgE APA. Here, we developed a rigorous competitive ELISA method to measure the concentrations of various APA isotypes, including IgE, with picomolar sensitivities. In a small number of serum samples from patients with known PEG allergy, the assay allowed us to detect a strong correlation between IgG and IgE APA in individuals with history of allergic reactions to PEG or PEGylated drugs, but not between IgM and IgE APA. We detected appreciable levels of IgG and IgM APA in individuals with history of alpha-gal allergy, however, they were not elevated relative to those detected in other healthy controls, and we found no pre-existing IgE APA. While preliminary and should be further investigated, these results suggest that differences in the route and mechanism of PEG exposure may drive variability in APA response.


Subject(s)
Food Hypersensitivity , Hypersensitivity , Humans , Enzyme-Linked Immunosorbent Assay , Immunosuppressive Agents , Polyethylene Glycols , Immunoglobulin E , Immunoglobulin G , Immunoglobulin M
7.
BMJ Open ; 13(10): e078410, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907301

ABSTRACT

INTRODUCTION: Efficacious programmes require implementation at scale to maximise their public health impact. TransformUs is an efficacious behavioural and environmental intervention for increasing primary (elementary) school children's (5-12 years) physical activity and reducing their sedentary behaviour within school and home settings. This paper describes the study protocol of a 5-year effectiveness-implementation trial to assess the scalability and effectiveness of the TransformUs programme. METHODS AND ANALYSIS: A type II hybrid implementation-effectiveness trial, TransformUs is being disseminated to all primary schools in the state of Victoria, Australia (n=1786). Data are being collected using mixed methods at the system (state government, partner organisations), organisation (school) and individual (teacher, parent and child) levels. Evaluation is based on programme Reach, Effectiveness, Adoption, Implementation and Maintenance (RE-AIM) framework. RE-AIM domains are being measured using a quasi-experimental, pre/post, non-equivalent group design, at baseline, 12 and 24 months. Effectiveness will be determined in a subsample of 20 intervention schools (in Victoria) and 20 control schools (in New South Wales (NSW), Australia), at baseline, 12 and 24 months. Primary outcomes include TransformUs Reach, Adoption, Implementation and organisational Maintenance (implementation trial), and children's physical activity and sedentary time assessed using accelerometers (effectiveness trial). Secondary outcomes include average sedentary time and moderate to vigorous-intensity physical activity on weekdays and during school hours, body mass index z-scores and waist circumference (effectiveness trial). Linear mixed-effects models will be fitted to compare outcomes between intervention and control participants accounting for clustering of children within schools, confounding and random effects. ETHICS AND DISSEMINATION: The trial was approved by the Deakin University Human Research Ethics Committee (HEAG-H 28_2017), Victorian Department of Education, the NSW Department of Education, Australian Catholic University (2017-145R), Melbourne Archdiocese Catholic Schools and Catholic Schools NSW. Partners, schools/teachers and parents will provide an informed signed consent form prior to participating. Parents will provide consent for their child to participate in the effectiveness trial. Findings will be disseminated via peer-reviewed publications, scientific conferences, summary reports to schools and our partner organisations, and will inform education policy and practice on effective and sustainable ways to promote physical activity and reduce sedentary behaviours population-wide. TRIAL REGISTRATION NUMBER: Australian Clinical Trials Registration Registry (ACTRN12617000204347).


Subject(s)
Health Promotion , Sedentary Behavior , Child , Humans , Exercise , Health Promotion/methods , School Health Services , Schools , Victoria
8.
Acta Biomater ; 170: 250-259, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37659730

ABSTRACT

The interactions between polymers and the immune system remains poorly controlled. In some instances, the immune system can produce antibodies specific to polymer constituents. Indeed, roughly half of pegloticase patients without immunomodulation develop high titers of anti-PEG antibodies (APA) to the PEG polymers on pegloticase, which then quickly clear the drug from circulation and render the gout treatment ineffective. Here, using pegloticase as a model drug, we show that addition of high molecular weight (MW) free (unconjugated) PEG to pegloticase allows us to control the immunogenicity and mitigates APA induction in mice. Compared to pegloticase mixed with saline, mice repeatedly dosed with pegloticase containing different MW or amount of free PEG possessed 4- to 12- fold lower anti-PEG IgG, and 6- to 10- fold lower anti-PEG IgM, after 3 rounds of pegloticase dosed every 2 weeks. The markedly reduced APA levels, together with competitive inhibition by free PEG, restored the prolonged circulation of pegloticase to levels observed in APA-naïve animals. In contrast, mice with pegloticase-induced APA eliminated nearly all pegloticase from the circulation within just four hours post-injection. These results support the growing literature demonstrating free PEG may effectively suppress drug-induced APA, which in turn may offer sustained therapeutic benefits without requiring broad immunomodulation. We also showed free PEG effectively blocked the PEGylated protein from binding with cells expressing PEG-specific B cell receptors. It provides a template of how we may be able to tune the interactions and immunogenicity of other polymer-modified therapeutics. STATEMENT OF SIGNIFICANCE: A major challenge with engineering materials for drug delivery is their interactions with the immune system. For instance, our body can produce high levels of anti-PEG antibodies (APA). Unfortunately, the field currently lack tools to limit immunostimulation or overcome pre-existing anti-PEG antibodies, without using broad immunosuppression. Here, we showed that simply introducing free PEG into a clinical formulation of PEG-uricase can effectively limit induction of anti-PEG antibodies, and restore their prolonged circulation upon repeated dosing. Our work offers a readily translatable method to safely and effectively restore the use PEG-drugs in patients with PEG-immunity, and provides a template to use unconjugated polymers with low immunogenicity to regulate interactions with the immune system for other polymer-modified therapeutics.


Subject(s)
Antibodies , Urate Oxidase , Humans , Animals , Mice , Molecular Weight , Urate Oxidase/therapeutic use , Antibodies/pharmacology , Polyethylene Glycols/pharmacology , Polyethylene Glycols/therapeutic use
9.
Acta Biomater ; 169: 387-397, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37499728

ABSTRACT

In addition to direct neutralization and other classical effector functions, IgG possesses a little recognized and thus under-utilized effector function at mucosal surfaces: Fc-mucin bonds enable IgG to trap viruses in mucus. Due to the paucity of envelope glycoproteins that limits the number of IgG that can bind HIV, it remains poorly understood whether IgG-mucin interactions can effectively immobilize HIV in human cervicovaginal mucus (CVM). Here, we obtained 54 fresh, undiluted CVM specimens from 17 different women, and employed high-resolution multiple particle tracking to quantify the mobility of fluorescent HIV virus-like-particles in CVM treated with various HIV-specific IgG. We observed consistent and effective trapping of HIV by broadly neutralizing antibodies (VRC01, PGT121, and 2F5) in a subset of women. While trapping efficacy was not affected by the menstrual cycle, it was positively correlated with appreciable L. Crispatus populations in the microbiome, and negatively correlated with appreciable L. Iners or G. Vaginalis populations. Our work demonstrates for the first time that IgG-mucin crosslinking is capable of reinforcing the mucosal barrier against HIV, and motivates further investigation of passive immunization against vaginal transmission of STIs. STATEMENT OF SIGNIFICANCE: HIV transmission in women primarily occurs vaginally, yet the 3-way interactions between mucins and HIV virions mediated by HIV-binding antibodies in cervicovaginal mucus (CVM) is not well understood. While IgG-Fc possess weak affinity to mucins that trap virus/IgG complexes in mucus, the effectiveness against HIV remains unclear, due to the low number of virion-bound IgG. Here, we discovered that IgG can trap HIV consistently in CVM from select individuals regardless of their birth control status or menstrual cycle phase. IgG-mediated trapping of HIV was moderately associated with microbiome composition. These results suggest that IgG-mucin interactions could potentially reduce HIV transmission and highlight the importance of mucosal secretions in antibody-mediated prevention of HIV and other sexually transmitted infections.


Subject(s)
HIV Infections , HIV-1 , Humans , Female , Cervix Uteri , Broadly Neutralizing Antibodies/metabolism , Mucus/metabolism , HIV Infections/metabolism , Immunoglobulin G , Mucins/metabolism
10.
Front Cell Infect Microbiol ; 13: 1015625, 2023.
Article in English | MEDLINE | ID: mdl-37065197

ABSTRACT

Introduction: Mucus in the female reproductive tract acts as a barrier that traps and eliminates pathogens and foreign particles via steric and adhesive interactions. During pregnancy, mucus protects the uterine environment from ascension of pathogens and bacteria from the vagina into the uterus, a potential contributor to intrauterine inflammation and preterm birth. As recent work has demonstrated the benefit of vaginal drug delivery in treating women's health indications, we sought to define the barrier properties of human cervicovaginal mucus (CVM) during pregnancy to inform the design of vaginally delivered therapeutics during pregnancy. Methods: CVM samples were self-collected by pregnant participants over the course of pregnancy, and barrier properties were quantified using multiple particle tracking. 16S rRNA gene sequencing was performed to analyze the composition of the vaginal microbiome. Results: Participant demographics differed between term delivery and preterm delivery cohorts, with Black or African American participants being significantly more likely to delivery prematurely. We observed that vaginal microbiota is most predictive of CVM barrier properties and of timing of parturition. Lactobacillus crispatus dominated CVM samples showed increased barrier properties compared to polymicrobial CVM samples. Discussion: This work informs our understanding of how infections occur during pregnancy, and directs the engineering of targeted drug treatments for indications during pregnancy.


Subject(s)
Microbiota , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , RNA, Ribosomal, 16S/genetics , Vagina/microbiology , Mucus , Microbiota/genetics
11.
J Theor Biol ; 565: 111470, 2023 05 21.
Article in English | MEDLINE | ID: mdl-36965846

ABSTRACT

The SARS-CoV-2 coronavirus continues to evolve with scores of mutations of the spike, membrane, envelope, and nucleocapsid structural proteins that impact pathogenesis. Infection data from nasal swabs, nasal PCR assays, upper respiratory samples, ex vivo cell cultures and nasal epithelial organoids reveal extreme variabilities in SARS-CoV-2 RNA titers within and between the variants. Some variabilities are naturally prone to clinical testing protocols and experimental controls. Here we focus on nasal viral load sensitivity arising from the timing of sample collection relative to onset of infection and from heterogeneity in the kinetics of cellular infection, uptake, replication, and shedding of viral RNA copies. The sources of between-variant variability are likely due to SARS-CoV-2 structural protein mutations, whereas within-variant population variability is likely due to heterogeneity in cellular response to that particular variant. With the physiologically faithful, agent-based mechanistic model of inhaled exposure and infection from (Chen et al., 2022), we perform statistical sensitivity analyses of the progression of nasal viral titers in the first 0-48 h post infection, focusing on three kinetic mechanisms. Model simulations reveal shorter latency times of infected cells (including cellular uptake, viral RNA replication, until the onset of viral RNA shedding) exponentially accelerate nasal viral load. Further, the rate of infectious RNA copies shed per day has a proportional influence on nasal viral load. Finally, there is a very weak, negative correlation of viral load with the probability of infection per virus-cell encounter, the model proxy for spike-receptor binding affinity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Viral Load , COVID-19 Testing
13.
Biochem Pharmacol ; 206: 115285, 2022 12.
Article in English | MEDLINE | ID: mdl-36241097

ABSTRACT

B cells have long been an underutilized target in immune cell engineering, despite a number of unique attributes that could address longstanding challenges in medicine. Notably, B cells evolved to secrete large quantities of antibodies for prolonged periods, making them suitable platforms for long-term protein delivery. Recent advances in gene editing technologies, such as CRISPR-Cas, have improved the precision and efficiency of engineering and expanded potential applications of engineered B cells. While most work on B cell editing has focused on ex vivo modification, a body of recent work has also advanced the possibility of in vivo editing applications. In this review, we will discuss both past and current approaches to B cell engineering, and its promising applications in immunology research and therapeutic gene editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing
14.
Bioeng Transl Med ; : e10391, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36248234

ABSTRACT

The respiratory tract represents the key target for antiviral delivery in early interventions to prevent severe COVID-19. While neutralizing monoclonal antibodies (mAb) possess considerable efficacy, their current reliance on parenteral dosing necessitates very large doses and places a substantial burden on the healthcare system. In contrast, direct inhaled delivery of mAb therapeutics offers the convenience of self-dosing at home, as well as much more efficient mAb delivery to the respiratory tract. Here, building on our previous discovery of Fc-mucin interactions crosslinking viruses to mucins, we showed that regdanvimab, a potent neutralizing mAb already approved for COVID-19 in several countries, can effectively trap SARS-CoV-2 virus-like particles in fresh human airway mucus. IN-006, a reformulation of regdanvimab, was stably nebulized across a wide range of concentrations, with no loss of activity and no formation of aggregates. Finally, nebulized delivery of IN-006 resulted in 100-fold greater mAb levels in the lungs of rats compared to serum, in marked contrast to intravenously dosed mAbs. These results not only support our current efforts to evaluate the safety and efficacy of IN-006 in clinical trials, but more broadly substantiate nebulized delivery of human antiviral mAbs as a new paradigm in treating SARS-CoV-2 and other respiratory pathologies.

15.
JMIR Mhealth Uhealth ; 10(8): e35261, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35972777

ABSTRACT

BACKGROUND: Adolescence is a critical age where steep declines in physical activity and increases in sedentary time occur. Promoting physical activity should therefore be a priority for short- and long-term health benefits. Wearable activity trackers in combination with supportive resources have the potential to influence adolescents' physical activity levels and sedentary behavior. Examining the pathways through which such interventions work can inform which mediators to target in future studies. OBJECTIVE: The aim of this paper is to examine the impact of the Raising Awareness of Physical Activity (RAW-PA) intervention on potential mediators of behavior change after intervention, and whether these mediated the intervention effects on physical activity and sedentary time at 6-month follow-up. METHODS: RAW-PA was a 12-week intervention, grounded in social cognitive theory and behavioral choice theory, aimed at increasing physical activity among inactive adolescents through combining a wearable activity tracker with digital resources delivered via a private Facebook group (n=159 complete cases). The targeted potential mediators were identified from previous studies conducted in adolescents and included self-efficacy, peer support, family support, teacher support, self-regulation strategies, barriers, and enjoyment. Outcomes included sedentary time as well as light- and moderate-to-vigorous-intensity physical activity. A series of mixed linear models were used to estimate intervention effects on physical activity and sedentary behavior at follow-up and on potential mediators after intervention and to test whether there were indirect effects of the intervention on physical activity and sedentary behavior via mediators. RESULTS: Adolescents in the intervention group (n=75) engaged in higher sedentary time and lower light intensity at 6-month follow-up compared to the wait-list controls (n=84). There were no intervention effects for moderate-to-vigorous-intensity physical activity. The intervention group perceived more barriers to physical activity than the wait-list control group at 6-month follow-up (mean adjusted difference=1.77; 95% CI 0.19-3.34; P=.03). However, indirect effects for each outcome were not statistically significant, indicating that perceived barriers to physical activity did not mediate intervention effects for physical activity or sedentary time. CONCLUSIONS: RAW-PA did not beneficially impact hypothesized mediators in these inactive adolescents, despite strategies being designed to target them. This suggests that the lack of overall intervention effects on physical activity and sedentary time observed in the RAW-PA study could be due to the limited impact of the intervention on the targeted mediators. Future studies should consider different strategies to target theoretically informed potential mediators and identify intervention strategies that effectively target key mediators to improve physical activity among inactive adolescents. Finally, intervention effects according to level of wearable tracker use or level of engagement with the intervention should be explored. This may provide important insights for designing successful wearable activity tracker interventions. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12616000899448; https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=370716&isReview=true. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1186/s12889-016-3945-5.


Subject(s)
Fitness Trackers , Sedentary Behavior , Adolescent , Australia , Exercise/psychology , Health Promotion , Humans
16.
Biophys J ; 121(9): 1619-1631, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35378080

ABSTRACT

Mechanistic insights into human respiratory tract (RT) infections from SARS-CoV-2 can inform public awareness as well as guide medical prevention and treatment for COVID-19 disease. Yet the complexity of the RT and the inability to access diverse regions pose fundamental roadblocks to evaluation of potential mechanisms for the onset and progression of infection (and transmission). We present a model that incorporates detailed RT anatomy and physiology, including airway geometry, physical dimensions, thicknesses of airway surface liquids (ASLs), and mucus layer transport by cilia. The model further incorporates SARS-CoV-2 diffusivity in ASLs and best-known data for epithelial cell infection probabilities, and, once infected, duration of eclipse and replication phases, and replication rate of infectious virions. We apply this baseline model in the absence of immune protection to explore immediate, short-term outcomes from novel SARS-CoV-2 depositions onto the air-ASL interface. For each RT location, we compute probability to clear versus infect; per infected cell, we compute dynamics of viral load and cell infection. Results reveal that nasal infections are highly likely within 1-2 days from minimal exposure, and alveolar pneumonia occurs only if infectious virions are deposited directly into alveolar ducts and sacs, not via retrograde propagation to the deep lung. Furthermore, to infect just 1% of the 140 m2 of alveolar surface area within 1 week, either 103 boluses each with 106 infectious virions or 106 aerosols with one infectious virion, all physically separated, must be directly deposited. These results strongly suggest that COVID-19 disease occurs in stages: a nasal/upper RT infection, followed by self-transmission of infection to the deep lung. Two mechanisms of self-transmission are persistent aspiration of infected nasal boluses that drain to the deep lung and repeated rupture of nasal aerosols from infected mucosal membranes by speaking, singing, or cheering that are partially inhaled, exhaled, and re-inhaled, to the deep lung.


Subject(s)
COVID-19 , Aerosols , Humans , Lung , SARS-CoV-2 , Viral Load
17.
J Control Release ; 343: 303-313, 2022 03.
Article in English | MEDLINE | ID: mdl-35104570

ABSTRACT

Interactions between different cell types in the tumor microenvironment (TME) affect tumor growth. Tumor-associated fibroblasts produce C-X-C motif chemokine ligand 13 (CXCL13) which recruits B cells to the TME. B-cells in the TME differentiate into regulatory B cells (Bregs) (IL-10+CD1d+CD5+CD138+CD19+). We highlight these Breg cells as a new important factor in the modulation of the immunosuppressive TME in different desmoplastic murine tumor models. In addition, CXCL13 also stimulates epithelial-mesenchymal transition (EMT) of the tumor cells. The tumorigenic roles of CXCL13 led us to explore an innovative anti-cancer strategy based on delivering plasmid DNA encoding a CXCL13 trap to reduce Bregs differentiation and normalize EMT, thereby suppressing tumor growth. CXCL13 trap suppressed tumor growth in pancreatic cancer, BRAF-mutant melanoma, and triple-negative breast cancer. In this study, following treatment, the affected tumor remained dormant resulting in prolonged progression-free survival of the host.


Subject(s)
B-Lymphocytes, Regulatory , Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Triple Negative Breast Neoplasms , Animals , B-Lymphocytes, Regulatory/metabolism , Chemokine CXCL13/genetics , Chemokine CXCL13/metabolism , Humans , Mice , Pancreatic Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy , Tumor Microenvironment
18.
J Control Release ; 343: 518-527, 2022 03.
Article in English | MEDLINE | ID: mdl-35066099

ABSTRACT

PEGylation is routinely used to extend the systemic circulation of various protein therapeutics and nanomedicines. Nonetheless, mounting evidence is emerging that individuals exposed to select PEGylated therapeutics can develop antibodies specific to PEG, i.e., anti-PEG antibodies (APA). In turn, APA increase both the risk of hypersensitivity to the drug as well as potential loss of efficacy due to accelerated blood clearance of the drug. Despite the broad implications of APA, the timescales and systemic specificity by which APA can alter the pharmacokinetics and biodistribution of PEGylated drugs remain not well understood. Here, we developed a physiologically based pharmacokinetic (PBPK) model designed to resolve APA's impact on both early- and late-phase pharmacokinetics and biodistribution of intravenously administered PEGylated drugs. Our model accurately recapitulates PK and biodistribution data obtained from PET/CT imaging of radiolabeled PEG-liposomes and PEG-uricase in mice with and without APA, as well as serum levels of PEG-uricase in humans. Our work provides another illustration of the power of high-resolution PBPK models for understanding the pharmacokinetic impacts of anti-drug antibodies and the dynamics with which antibodies can mediate clearance of foreign species.


Subject(s)
Liposomes , Positron Emission Tomography Computed Tomography , Animals , Antibodies , Kinetics , Mice , Polyethylene Glycols/pharmacokinetics , Tissue Distribution
19.
Hum Vaccin Immunother ; 18(2): 1939605, 2022 04 29.
Article in English | MEDLINE | ID: mdl-34314289

ABSTRACT

In addition to the classical immunological functions such as neutralization, antibody-dependent cellular cytotoxicity, and complement activation, IgG antibodies possess a little-recognized and under-utilized effector function at mucosal surfaces: trapping pathogens in mucus. IgG can potently immobilize pathogens that otherwise readily diffuse or actively swim through mucus by forming multiple low-affinity bonds between the array of pathogen-bound antibodies and the mucin mesh. Trapping in mucus can exclude pathogens from contacting target cells, and facilitate their rapid elimination by natural mucus clearance mechanisms. Despite the fact that most infections are transmitted at mucosal surfaces, this muco-trapping effector function has only been revealed within the past decade, with the evidence to date suggesting that it is a universal effector function of IgG-Fc capable of immobilizing both viral and highly motile bacterial pathogens in all major mucosal secretions. This review provides an overview of the current evidence for Fc-mucin crosslinking as an effector function for antibodies in mucus, the mechanism by which the accumulation of weak Fc-mucin bonds by IgG bound to the surface of a pathogen can result in immobilization of antibody-pathogen complexes, and how trapping in mucus can contribute to protection against foreign pathogens.


Subject(s)
Immunoglobulin G , Mucus , Antibody-Dependent Cell Cytotoxicity , Mucins , Mucus/metabolism
20.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34815336

ABSTRACT

Nonhormonal products for on-demand contraception are a global health technology gap; this unmet need motivated us to pursue the use of sperm-binding monoclonal antibodies to enable effective on-demand contraception. Here, using the cGMP-compliant Nicotiana-expression system, we produced an ultrapotent sperm-binding IgG antibody possessing 6 Fab arms per molecule that bind a well-established contraceptive antigen target, CD52g. We term this hexavalent antibody "Fab-IgG-Fab" (FIF). The Nicotiana-produced FIF had at least 10-fold greater sperm-agglutination potency and kinetics than the parent IgG, while preserving Fc-mediated trapping of individual spermatozoa in mucus. We formulated the Nicotiana-produced FIF into a polyvinyl alcohol-based water-soluble contraceptive film and evaluated its potency in reducing progressively motile sperm in the sheep vagina. Two minutes after vaginal instillation of human semen, no progressively motile sperm were recovered from the vaginas of sheep receiving FIF Film. Our work supports the potential of multivalent contraceptive antibodies to provide safe, effective, on-demand nonhormonal contraception.


Subject(s)
Antibodies, Monoclonal/pharmacology , Contraception/methods , Spermatozoa/immunology , Administration, Intravaginal , Animals , Antibodies/immunology , Contraceptive Agents/pharmacology , Female , Humans , Immunoglobulin Fab Fragments/pharmacology , Immunoglobulin G/pharmacology , Male , Models, Animal , Sheep , Sperm Motility
SELECTION OF CITATIONS
SEARCH DETAIL
...