Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Heart Fail ; 17(3): e010569, 2024 03.
Article in English | MEDLINE | ID: mdl-38410978

ABSTRACT

BACKGROUND: Exercise training can promote cardiac rehabilitation, thereby reducing cardiovascular disease mortality and hospitalization rates. MicroRNAs (miRs) are closely related to heart disease, among which miR-574-3p plays an important role in myocardial remodeling, but its role in exercise-mediated cardioprotection is still unclear. METHODS: A mouse myocardial hypertrophy model was established by transverse aortic coarctation, and a 4-week swimming exercise training was performed 1 week after the operation. After swimming training, echocardiography was used to evaluate cardiac function in mice, and histopathologic staining was used to detect cardiac hypertrophy, myocardial fibrosis, and cardiac inflammation. Quantitative real-time polymerase chain reaction was used to detect the expression levels of miR-574-3p and cardiac hypertrophy markers. Western blotting detected the IL-6 (interleukin-6)/JAK/STAT inflammatory signaling pathway. RESULTS: Echocardiography and histochemical staining found that aerobic exercise significantly improved pressure overload-induced myocardial hypertrophy (n=6), myocardial interstitial fibrosis (n=6), and cardiac inflammation (n=6). Quantitative real-time polymerase chain reaction detection showed that aerobic exercise upregulated the expression level of miR-574-3p (n=6). After specific knockdown of miR-574-3p in mouse hearts with adeno-associated virus 9 using cardiac troponin T promoter, we found that the protective effect of exercise training on the heart was significantly reversed. Echocardiography and histopathologic staining showed that inhibiting the expression of miR-574-3p could partially block the effects of aerobic exercise on cardiac function (n=6), cardiomyocyte cross-sectional area (n=6), and myocardial fibrosis (n=6). Western blotting and immunohistochemical staining showed that the inhibitory effects of aerobic exercise on the IL-6/JAK/STAT pathway and cardiac inflammation were partially abolished after miR-574-3p knockdown. Furthermore, we also found that miR-574-3p exerts cardioprotective effects in cardiomyocytes by targeting IL-6 (n=3). CONCLUSIONS: Aerobic exercise protects cardiac hypertrophy and inflammation induced by pressure overload by upregulating miR-574-3p and inhibiting the IL-6/JAK/STAT pathway.


Subject(s)
Heart Failure , MicroRNAs , Myocarditis , Mice , Animals , Interleukin-6/metabolism , Janus Kinases/metabolism , Heart Failure/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Myocytes, Cardiac/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cardiomegaly/pathology , Myocarditis/genetics , Myocarditis/prevention & control , Inflammation/pathology , Disease Models, Animal , Fibrosis
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166813, 2023 12.
Article in English | MEDLINE | ID: mdl-37488049

ABSTRACT

Ubiquitin-specific protease 22 (USP22) is a member of the ubiquitin specific protease family (ubiquitin-specific protease, USPs), the largest subfamily of deubiquitinating enzymes, and plays an important role in the treatment of tumors. USP22 is also expressed in the heart. However, the role of USP22 in heart disease remains unclear. In this study, we found that USP22 was elevated in hypertrophic mouse hearts and in angiotensin II (Ang II)-induced cardiomyocytes. The inhibition of USP22 expression with adenovirus significantly rescued hypertrophic phenotype and cardiac dysfunction induced by pressure overloaded. Consistent with in vivo study, silencing by USP22 shRNA expression in vitro had similar results. Molecular analysis revealed that transforming growth factor-ß-activating protein 1 (TAK1)-(JNK1/2)/P38 signaling pathway and HIF-1α was activated in the Ang II-induced hypertrophic cardiomyocytes, whereas HIF-1α expression was decreased after the inhibition of USP22. Inhibition of HIF-1α expression reduces TAK1 expression. Co-immunoprecipitation and ubiquitination studies revealed the regulatory mechanism between USP22 and HIF1α.Under hypertrophic stress conditions, USP22 enhances the stability of HIF-1α through its deubiquitination activity, which further activates the TAK1-(JNK1/2)/P38 signaling pathway to lead to cardiac hypertrophy. Inhibition of HIF-1α expression further potentiates the in vivo pathological effects caused by USP22 deficiency. In summary, this study suggests that USP22, through HIF-1α-TAK1-(JNK1/2)/P38 signaling pathway, may be potential targets for inhibiting pathological cardiac hypertrophy induced by pressure overload.


Subject(s)
Cardiomegaly , MAP Kinase Kinase Kinases , Animals , Mice , Cardiomegaly/metabolism , MAP Kinase Kinase Kinases/genetics , Myocytes, Cardiac/metabolism , Signal Transduction , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/pharmacology
3.
Acta Pharmacol Sin ; 44(7): 1366-1379, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36721009

ABSTRACT

Previous studies show that notoginsenoside R1 (NG-R1), a novel saponin isolated from Panax notoginseng, protects kidney, intestine, lung, brain and heart from ischemia-reperfusion injury. In this study we investigated the cardioprotective mechanisms of NG-R1 in myocardial ischemia/reperfusion (MI/R) injury in vivo and in vitro. MI/R injury was induced in mice by occluding the left anterior descending coronary artery for 30 min followed by 4 h reperfusion. The mice were treated with NG-R1 (25 mg/kg, i.p.) every 2 h for 3 times starting 30 min prior to ischemic surgery. We showed that NG-R1 administration significantly decreased the myocardial infarction area, alleviated myocardial cell damage and improved cardiac function in MI/R mice. In murine neonatal cardiomyocytes (CMs) subjected to hypoxia/reoxygenation (H/R) in vitro, pretreatment with NG-R1 (25 µM) significantly inhibited apoptosis. We revealed that NG-R1 suppressed the phosphorylation of transforming growth factor ß-activated protein kinase 1 (TAK1), JNK and p38 in vivo and in vitro. Pretreatment with JNK agonist anisomycin or p38 agonist P79350 partially abolished the protective effects of NG-R1 in vivo and in vitro. Knockdown of TAK1 greatly ameliorated H/R-induced apoptosis of CMs, and NG-R1 pretreatment did not provide further protection in TAK1-silenced CMs under H/R injury. Overexpression of TAK1 abolished the anti-apoptotic effect of NG-R1 and diminished the inhibition of NG-R1 on JNK/p38 signaling in MI/R mice as well as in H/R-treated CMs. Collectively, NG-R1 alleviates MI/R injury by suppressing the activity of TAK1, subsequently inhibiting JNK/p38 signaling and attenuating cardiomyocyte apoptosis.


Subject(s)
Ginsenosides , Myocardial Reperfusion Injury , Mice , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Ginsenosides/metabolism , Myocardium , Myocytes, Cardiac , Apoptosis
4.
Acta Pharmacol Sin ; 43(7): 1721-1732, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34853445

ABSTRACT

Endoplasmic reticulum stress-mediated apoptosis plays a vital role in the occurrence and development of heart failure. Dapagliflozin (DAPA), a new type of sodium-glucose cotransporter 2 (SGLT2) inhibitor, is an oral hypoglycemic drug that reduces glucose reabsorption by the kidneys and increases glucose excretion in the urine. Studies have shown that DAPA may have the potential to treat heart failure in addition to controlling blood sugar. This study explored the effect of DAPA on endoplasmic reticulum stress-related apoptosis caused by heart failure. In vitro, we found that DAPA inhibited the expression of cleaved caspase 3, Bax, C/EBP homologous protein (CHOP), and glucose-regulated protein78 (GRP78) and upregulated the cardiomyoprotective protein Bcl-2 in angiotensin II (Ang II)-treated cardiomyocytes. In addition, DAPA promoted the expression of silent information regulator factor 2-related enzyme 1 (SIRT1) and suppressed the expression of activating transcription factor 4 (ATF4) and the ratios p-PERK/PERK and p-eIF2α/eIF2α. Notably, the therapeutic effect of DAPA was weakened by pretreatment with the SIRT1 inhibitor EX527 (10 µM). Simultaneous administration of DAPA inhibited the Ang II-induced transformation of fibroblasts into myofibroblasts and inhibited fibroblast migration. In summary, our present findings first indicate that DAPA could inhibit the PERK-eIF2α-CHOP axis of the ER stress response through the activation of SIRT1 in Ang II-treated cardiomyocytes and ameliorate heart failure development in vivo.


Subject(s)
Endoplasmic Reticulum Stress , Heart Failure , Animals , Apoptosis , Benzhydryl Compounds , Eukaryotic Initiation Factor-2/metabolism , Glucose/pharmacology , Glucosides , Heart Failure/drug therapy , Mice , Sirtuin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...