Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Lett ; 45(9): 1169-1181, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37395871

ABSTRACT

OBJECTIVES: To explore an L-isoleucine (Ile)-induced biosensor for down-regulation of Ile synthesis pathway and enhancement of 4-hydroxyisoleucine (4-HIL) production in Corynebacterium glutamicum SN01. RESULTS: Four Ile-induced riboswitches (IleRSN) with different strength were screened from mutation library based on TPP riboswitch. Firstly, IleRSN were integrated into the chromosome of strain SN01 immediately upstream of ilvA gene. The 4-HIL titer of strains carrying PtacM-driven IleRS1 or IleRS3 (14.09 ± 1.07, 15.20 ± 0.93 g 4-HIL L-1) were similar with control strain S-D5I (15.73 ± 2.66 g 4-HIL L-1). Then, another copy of IleRS3-ilvA was integrated downstream of the chromosomal cg0963 gene in SN01-derived strain D-RS with down-regulated L-lysine (Lys) biosynthesis. The Ile supply and 4-HIL titer increased in ilvA two-copy strains KIRSA-3-D5I and KIRSA-3-9I, and Ile concentration was maintained less than 35 mmol L-1 under the control of IleRS3 during fermentation. The resulting strain KIRSA-3-9I produced 22.46 ± 0.96 g 4-HIL L-1. CONCLUSION: The screened IleRS was effective in the dynamic down-regulation of Ile synthesis pathway in C. glutamicum, and IleRSN with different strength can be applied in various conditions.


Subject(s)
Corynebacterium glutamicum , Riboswitch , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Riboswitch/genetics , Isoleucine/genetics , Isoleucine/metabolism , Metabolic Engineering
2.
World J Microbiol Biotechnol ; 39(10): 266, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37524856

ABSTRACT

Corynebacterium glutamicum, an important industrial producer, is a model microorganism. However, the limited gene editing methods and their defects limit the efficient genome editing of C. glutamicum. To improve the screening efficiency of second-cross-over strains of traditional SacB editing system, a universal pCS plasmid which harbors CRISPR-Cpf1 system targeting kan gene of SacB system was designed and established to kill the false positive single-cross-over strains remained abundantly after the second-cross-over events. The lethality of pCS plasmid to C. glutamicum carrying kan gene on its genome was as high as 98.6%. In the example of PodhA::PilvBNC replacement, pCS plasmid improved the screening efficiency of second-cross-over bacteria from 5% to over 95%. Then this pCS-assisted gene editing system was applied to improve the supply of precursors and reduce the generation of by-products in the production of 4-hydroxyisoleucine (4-HIL). The 4-HIL titer of one edited strain SC01-TD5IM reached 137.0 ± 33.9 mM, while the weakening of lysE by promoter engineering reduced Lys content by 19.0-47.7% and 4-HIL titer by 16.4-64.5%. These editing demonstrates again the efficiency of this novel CRISPR-Cpf1-assisted gene editing tool, suggesting it as a useful tool for improving the genome editing and metabolic engineering in C. glutamicum.


Subject(s)
Corynebacterium glutamicum , Gene Editing , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Isoleucine/genetics , Isoleucine/metabolism , Metabolic Engineering
3.
Appl Microbiol Biotechnol ; 106(13-16): 5105-5121, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35763071

ABSTRACT

4-hydroxyisoleucine (4-HIL) has a potential value in treating diabetes. The α-ketoglutarate (α-KG)-dependent isoleucine dioxygenase (IDO) can catalyze the hydroxylation of L-isoleucine (Ile) to form 4-HIL by consuming O2. In our previous study, the ido gene was overexpressed in an Ile-producing Corynebacterium glutamicum strain to synthesize 4-HIL from glucose. Here, a triple-functional dynamic control system was designed to regulate the activity of IDO, the supply of α-KG, O2, and Ile and the synthesis of by-product L-lysine (Lys) for promoting 4-HIL synthesis. Firstly, the codon-optimized ido was positively regulated by seven Ile biosensors Lrp-PbrnFEN with different intensities, and the resulting seven D-NI strains produced 38.7-111.1 mM 4-HIL. Then on the basis of D-NI, odhI and vgb were simultaneously regulated by three PbrnFEN with different intensities to synergistically control α-KG and O2 supply. The 4-HIL titer of twelve D-NINONV strains was more than 90 mM, with D-0I7O7V generating the highest titer of 141.1 ± 15.5 mM. Thirdly, ilvA was negatively regulated by an Ile attenuator PilvBNC on the basis of D-NI strains and some D-NINONV strains to balance the synthesis and conversion of Ile. The resulting D-NIPA strains produced 73.6-123.2 mM 4-HIL, while D-7I7O1VPA accumulated 127.1 ± 20.2 mM 4-HIL. Finally, dapA was negatively regulated by a Lys-OFF riboswitch and Lys content decreased by approximately 70% in most D-RS-NIPA strains. A strain D-RS-5IPA with the highest 4-HIL titer (177.3 ± 8.9 mM) and the lowest Lys concentration (6.1 ± 0.6 mM) was successfully obtained. Therefore, dynamic regulation of main and branch pathway by three functional biosensors can effectively promote 4-HIL biosynthesis in C. glutamicum. KEY POINTS: • Three biosensors were coordinated for dynamic 4-HIL biosynthesis in C. glutamicum • Bidirectional regulation of Ile synthesis and conversion promoted 4-HIL synthesis • Negative regulation of Lys synthesis further increased 4-HIL production.


Subject(s)
Biosensing Techniques , Corynebacterium glutamicum , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Isoleucine/analogs & derivatives , Ketoglutaric Acids/metabolism
4.
ACS Synth Biol ; 10(7): 1761-1774, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34165971

ABSTRACT

Corynebacterium glutamicum is an important industrial workhorse for the production of amino acids and other chemicals. However, the engineering of C. glutamicum is inflexible due to the lack of dynamic regulation tools. In this study, a quorum sensing (QS) circuit and its modulated hfq-sRNA cassette were constructed, and the dynamic control of gene expression by these bifunctional circuits was researched. First, the ComQXPA-PsrfA QS system of Bacillus subtilis was harnessed and modified to create an upregulating QS circuit, in which the transcription of genes controlled by the PsrfA promoter may be promoted at high cell density. This QS circuit successfully activated the expression of green fluorescent protein (GFP) to 6.35-fold in a cell density-dependent manner in C. glutamicum. Next, the hfq-sRNA-mediated downregulating circuit under the control of the ComQXPA-PsrfA QS system was established, and the expression of GFP was autonomously repressed by 96.1%. Next, to fine-tune these two QS circuits, a library of synthetic PsrfA based promoters was constructed, and a series of mutant PsrfAM promoters with 0.4-1.5-fold strength of native PsrfA were selected. Subsequently, the ComQXPA-PsrfAM QS circuit was utilized to upregulate the expression of red fluorescent protein, and the same QS-based hfq-sRNA system was utilized to downregulate the expression of GFP simultaneously. Last, this bifunctional ComQXPA-PsrfAM QS circuit was verified again by fine-tuning the expression of α-amylase. Therefore, the engineered ComQXPA-PsrfAM QS cassette can be applied as a novel bifunctional QS circuit to flexibly control gene expression in C. glutamicum.


Subject(s)
Bacterial Proteins/metabolism , Corynebacterium glutamicum/genetics , Gene Expression Regulation, Bacterial , Quorum Sensing , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Genes, Bacterial , Green Fluorescent Proteins/genetics , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...