Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Int J Biol Macromol ; 277(Pt 2): 134351, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39089547

ABSTRACT

Chitosan, as a biomaterial, has increasingly garnered attention. However, its limited solubility in water-only dissolving in certain dilute acidic solutions-substantially restricts its broader application. In this investigation, chitosan underwent a solubilization modification to acquire water solubility, facilitating its dissolution in neutral aqueous mediums. Subsequently, this water-soluble chitosan (WSC) was interlinked with oxidized carboxymethyl cellulose (OCMC), characterized by varied oxidation extents, to synthesize hydrogels. Structural characterization verified the formation of imine bonds resulting from crosslinking interactions between the amino groups of water-soluble chitosan and the aldehyde groups of oxidized carboxymethyl cellulose. Employing performance characterization analysis, it was discerned that an increase in the oxidation level of the oxidized carboxymethyl cellulose corresponded to a denser hydrogel network architecture and the hardness increased from 3.01 N to 6.16 N. Moreover, the capacity of these hydrogels to adsorb methylene blue was meticulously examined. Notably, the hydrogel denoted as WSC/66%OCMC manifested an adsorption capability of 28.08 mg/g for methylene blue. Analytical findings from adsorption kinetics and isotherm studies indicate that the adsorption mechanism of the WSC/66%OCMC hydrogel follows the pseudo-second-order kinetic model and corresponds to the Freundlich isotherm model.


Subject(s)
Carboxymethylcellulose Sodium , Chitosan , Hydrogels , Methylene Blue , Oxidation-Reduction , Solubility , Water , Methylene Blue/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Chitosan/chemistry , Carboxymethylcellulose Sodium/chemistry , Water/chemistry , Adsorption , Kinetics
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124269, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38608561

ABSTRACT

A colorimetric immunoassay was built for determination of carcinoembryonic antigen (CEA) based on papain-based colorimetric catalytic sensing system through the use of glucose oxidase (GOx). In the presence of GOx, glucose was catalytically oxidized to produce H2O2. Through the assistance of papain (as a peroxide mimetic enzyme), the signal came from the oxidative color development of 3,3',5,5'-tetramethylbenzidine (TMB, from colorless to blue) catalyzed by the generated H2O2. Herein, a sandwich-type immunoassay was built based on GOx as labels. As the concentration of CEA increased, more GOx-labeled antibodies specifically associate with target, which leaded to more H2O2 generation. Immediately following this, more TMB were oxidized with the addition of papain. Accordingly, the absorbance increased further. As a result, the concentration of CEA is positively correlated with the change in absorbance of the solution. Under optimal conditions, the CEA concentration was linear in the range of 0.05-20.0 ng/mL, and the limit of detection (LOD) reached 37 pg/mL. The papain-based colorimetric immunoassay also exhibited satisfactory repeatability, stability, and selectivity.


Subject(s)
Carcinoembryonic Antigen , Colorimetry , Limit of Detection , Papain , Carcinoembryonic Antigen/analysis , Colorimetry/methods , Papain/metabolism , Immunoassay/methods , Humans , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Hydrogen Peroxide/chemistry , Catalysis , Benzidines/chemistry , Biosensing Techniques/methods , Reproducibility of Results
3.
Int J Biol Macromol ; 264(Pt 1): 130564, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431021

ABSTRACT

This paper presents the formation of a self-healing hydrogel prepared by carboxyethyl modification of chitosan and crosslinking with oxidized sodium alginate. Concurrently, the incorporation of Ca2+ facilitated the formation of "calcium bridges" through intricate coordination with carboxyl moieties, bolstering the attributes of the hydrogel. Various characterization methods, including scanning electron microscopy, texture analysis, and rheological measurements, demonstrated that the introduction of carboxyethyl groups resulted in a more compact hydrogel network structure and improved the hardness and elasticity. The addition of Ca2+ helped to further enhance the mechanical performance of the hydrogel and increase its thermal stability. Then, the adsorption capacity was also investigated, showing adsorption capacities of 46.17 mg/g methylene blue and 46.44 mg/g congo red for carboxyethyl chitosan/oxidized sodium alginate hydrogel, a four-fold increase for congo red versus chitosan/oxidized sodium alginate hydrogel. In addition, the adsorption behavior of CEC/OSA/2%Ca2+ hydrogel can be well described by pseudo-second-order kinetic model and Langmuir adsorption isothermal model. Compared to traditional hydrogels, CEC/OSA/2%Ca2+ hydrogel shows superior mechanical strength, enhanced thermal stability, and improved adsorption capacity, which can effectively adsorb not only methylene blue but also congo red. These advancements demonstrate our hydrogel's innovative properties.


Subject(s)
Chitosan , Water Pollutants, Chemical , Chitosan/chemistry , Alginates/chemistry , Hydrogels/chemistry , Congo Red , Methylene Blue/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
4.
Anal Methods ; 16(13): 1901-1907, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38488115

ABSTRACT

Carcinoembryonic antigen (CEA), a vital biomarker, plays a significant role in the early diagnosis and prognostic estimation of malignant tumors. In this study, a split-type photoelectrochemical immunoassay for the sensitive quantification of CEA has been successfully developed based on the target-induced in situ formation of a Z-type heterojunction. First, gold nanoparticle-decorated ZnIn2S4 (AuNPs/ZnIn2S4) composites were synthesized and used for the fabrication of photoelectrodes. Then, the detection antibody labeled with Ag nanoparticles was formed and applied for the biorecognition of CEA and subsequent liberation of Ag+ ions to induce the in situ formation of Ag2S/AuNPs/ZnIn2S4, a Z-type heterojunction, on the photoelectrode. The Z-type Ag2S/AuNPs/ZnIn2S4 heterojunction with effectively promoted separation of photogenerated charge carriers could lead to a markedly enhanced photocurrent response and highly sensitive quantification of CEA. Moreover, the three-dimensional spatial structure of ZnIn2S4 provides abundant active sites for the reaction and exhibits non-enzymatic properties, which are conducive to the further improvement of the analytical performance of CEA. The developed split-type photoelectrochemical immunoassay with good sensitivity, satisfactory selectivity, reliable stability, wide dynamic linear range (0.01-20 ng mL-1), and low detection limit (7.3 pg mL-1) offers valuable insights into the development of novel PEC biosensing models for the detection of tumor biomarkers and holds potential application value in the field of disease diagnosis.


Subject(s)
Carcinoembryonic Antigen , Metal Nanoparticles , Carcinoembryonic Antigen/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Silver , Immunoassay/methods
5.
Oral Dis ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37154262

ABSTRACT

OBJECTIVE: Small extracellular vesicle (sEV)-mediated intercellular communication is increasingly the key for the understanding of venous malformations (VMs). This study aims to clarify the detailed changes of sEVs in VMs. SUBJECTS AND METHODS: Fifteen VM patients without treatment history and twelve healthy donors were enrolled in the study. sEVs were isolated from both fresh lesions and cell supernatant, and were examined by western blotting, nanoparticle tracking analysis and transmission electron microscopy. Western blot analysis, immunohistochemistry and immunofluorescence were adopted to screening candidate regulator of sEV size. Specific inhibitors and siRNA were employed to validate the role of dysregulated p-AKT/vacuolar protein sorting-associated protein 4B (VPS4B) signaling on the size of sEVs in endothelial cells. RESULTS: The size of sEVs derived from both VM lesion tissues and cell model was significantly increased. VPS4B, whose expression level was mostly significantly downregulated in VM endothelial cells, was responsible for the size change of sEVs. Targeting abnormal AKT activation corrected the size change of sEVs by recovering the expression level of VPS4B. CONCLUSION: Downregulated VPS4B in endothelial cells, resulted from abnormally activated AKT signaling, contributed to the increased size of sEVs in VMs.

6.
Talanta ; 258: 124414, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36889191

ABSTRACT

This work for the first time reports on a simple and rapid colorimetric immunoassay with rapid coordination of ascorbic acid 2-phosphate (AAP) and iron (III) for determination of carcinoembryonic antigen (CEA, used as a model) by using Fe2O3 nanoparticle based-chromogenic substrate system. The signal was produced rapidly (1 min) from the coordination of AAP and iron (III) with color development of colorless to brown. TD-DFT calculation methods were employed to simulate the UV-Vis spectra of AAP-Fe2+ and AAP-Fe3+ complexes. Moreover, Fe2O3 nanoparticle could be dissolved with the aid of acid, thereby releasing free iron (III). Herein, a sandwich-type immunoassay was established based on Fe2O3 nanoparticle as labels. As target CEA concentration increased, the number of Fe2O3 labelled-antibodies (bound specifically) increased, resulting in loading more Fe2O3 nanoparticle on platform. The absorbance increased as the number of free iron (III), derived from Fe2O3 nanoparticle, increased. So, the absorbance of reaction solution is positively correlated with antigen concentration. Under optimal conditions, the current results showed good performance for CEA detection in the range 0.02-10.0 ng/mL with a detection limit of 11 pg/mL. Moreover, the repeatability, stability, and selectivity of the colorimetric immunoassay were also acceptable.


Subject(s)
Carcinoembryonic Antigen , Nanoparticles , Carcinoembryonic Antigen/chemistry , Iron , Chromogenic Compounds , Colorimetry/methods , Immunoassay/methods , Limit of Detection
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121782, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36049298

ABSTRACT

In this work, a split-type dual-mode (colorimetric/photothermal) immunoassay method was designed for point-of-care testing (POCT) detection of mycotoxins (aflatoxin B1, AFB1 as the model analyte) in foodstuffs based on Pt supported on nitrogen-doped carbon amorphous (Pt-CN). The as-synthesized Pt-CN exhibits excellent peroxidase-mimicking activity, which can catalyze the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) into TMBox with sensitive colorimetric readout in the presence of hydrogen peroxide (H2O2). Moreover, the TMBox also serves as a near-infrared (NIR) photothermal agent to convert the colorimetric readout into heat under the irradiation of an 808 nm laser. A competitive-type immunoreaction is carried out between AFB1 and glucose oxidase (GOx)-labeled AFB1-bovine serum albumin (AFB1-BSA-GOx) conjugates. With the formation of immune complexes, the entrained GOx catalyzes the hydrolysis of glucose to generate H2O2, which further involves the Pt-CN catalyzed production of TMBox to increase colorimetric/photothermal readouts. Depending on the degree of TMB oxidation, the dual-mode immunoassay provides a linear range of 1.0 pg/mL to 10 ng/mL, with a limit of detection (LOD) of 0.22 pg/mL for the colorimetric assay and 0.76 pg/mL for the photothermal assay. Moreover, the developed method is successfully used to detect AFB1 in peanuts with acceptable accuracy compared with commercially enzyme-linked immunosorbent assay (ELISA) kits. Significantly, the photothermal readout in this method is recorded on a mobile phone device without any expensive instruments, providing an affordable and convenient tool for food safety testing.


Subject(s)
Aflatoxin B1 , Colorimetry , Aflatoxin B1/analysis , Antigen-Antibody Complex , Benzidines , Carbon , Colorimetry/methods , Glucose , Glucose Oxidase , Hydrogen Peroxide , Immunoassay/methods , Limit of Detection , Nitrogen , Peroxidases , Serum Albumin, Bovine , Platinum
8.
Biosens Bioelectron ; 216: 114664, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36057240

ABSTRACT

Lead halide perovskites have become a potential candidate as electrochemiluminescence (ECL) emitters owing to their appealing electronic-to-optical merits. It remains extremely challenging, however, to improve stability and enhance charge transfer. Herein, a self-enhanced superstructures was constructed by successively loading N-doped graphene quantum dot (NGQDs) and CsPbBr3 perovskite nanocrystals (PNCs) onto graphene supported two-dimensional mesoporous SiO2 nanosheets (2D mSiO2-G). This special architecture ensures improved stability and accelerated charge transport, leading to efficient self-enhanced ECL between NGQDs and PNCs in a confined mesoporous structure. Additionally, using molecular imprinting (MIP) as a protective barrier, an ECL sensor with high affinity for Ochratoxin A (OTA) detection was developed, which expressed the widest linear range of 10-5 ng/mL to 1.0 ng/mL and the lowest detection limit of 0.2 pg/mL. This work catches a glimpse of a new generation of desirable perovskite-based ECL emitters, which would be beneficial for its further application.


Subject(s)
Biosensing Techniques , Graphite , Nanoparticles , Quantum Dots , Biosensing Techniques/methods , Calcium Compounds , Graphite/chemistry , Luminescent Measurements/methods , Nanoparticles/chemistry , Oxides , Quantum Dots/chemistry , Silicon Dioxide/chemistry , Titanium
9.
Cell Tissue Res ; 390(2): 229-243, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35916917

ABSTRACT

Vascular wall resident stem cells (VW-SCs) play a key role in vascular formation and remodeling under both physiological and pathological situations. They not only serve as a reservoir to supply all types of vascular cells needed, but also regulate vascular homeostasis by paracrine effects. Venous malformations (VMs) are common congenital vascular malformations which are just characterized by the deficient quantity and abnormal function of vascular cells. However, the existence and role of VW-SCs in VMs is still unclear at present. In this study, the level and distribution of VW-SCs in 22 specimens of VMs were measured by immunochemistry, double-labeling immunofluorescence, and qPCR, followed by the Spearman rank correlation test. We found that both the protein and mRNA expression levels of CD34, vWF, VEGFR2, CD44, CD90, and CD105 were significantly downregulated in VMs compared with that in normal venules. VW-SCs were sporadically distributed or even absent within and outside the endothelium of VMs. The expression of the VW-SC-related markers was positively correlated with the density of both endothelial cells and perivascular cells. All those results and established evidence indicated that VW-SCs were more sporadically distributed with fewer amounts in VMs, which possibly contributing to the deficiency of vascular cells in VMs.


Subject(s)
Endothelial Cells , Vascular Malformations , Humans , Endothelial Cells/metabolism , Vascular Malformations/metabolism , Stem Cells/metabolism , Pericytes/metabolism
10.
Talanta ; 247: 123546, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35594834

ABSTRACT

Nanozymes are a series of elaborately designed nanomaterials that can mimic the catalytic sites of natural enzymes for reactions. Bypassing the tedious design and preparation of nanomaterial, in this work, we report on a novel just-in-time production system of copper hexacyanoferrate nanoparticles (CHNPs), which act as an oxidase-mimicking nanozyme. This system can rapidly produce CHNPs nanozyme on demand by simply mixing Cu(II) with potassium hexacyanoferrate(III) (K3[Fe(CN)6]). It is found that once K3[Fe(CN)6] is reduced to K4[Fe(CN)6], the formation of CHNPs is inhibited. Therefore, the just-in-time production system of CHNPs was coupled with alkaline phosphatase (ALP) to construct an enzyme-controllable just-in-time production (ECJP) system, in which ALP could inhibit the production of by catalyzing the hydrolysis of ascorbic acid 2-phosphate (AAP) to generating ascorbic acid (AA). The ECJP system is then used to probe the activity of ALP by employing 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) as the chromogenic substrate, and a detection limit of 0.003 U L-1 was achieved. Moreover, by adapting ALP as the enzyme label, an ECJP system-based colorimetric immunoassay protocol was established for sensitive detection of aflatoxin B1 (AFB1), and a detection limit as low as 0.73 pg mL-1 was achieved. The developed immunoassay method is successfully applied to the detection of AFB1 in peanut samples. The operation of ECJP system is quite simple and the coupling of ALP with CHNPs nanozyme can arouse dual enzyme-like cascade signal amplification. So, we believe this work can offer a new perspective for the development of nanozymes-based biodetection methods and colorimetric immunoassay strategies.


Subject(s)
Colorimetry , Nanoparticles , Alkaline Phosphatase , Colorimetry/methods , Copper , Ferrocyanides , Immunoassay/methods , Limit of Detection , Oxidoreductases
11.
J Int Med Res ; 49(7): 3000605211029557, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34308692

ABSTRACT

OBJECTIVE: Synovitis is a joint disease that seriously affects patient quality of life, but there are currently no diagnostic markers. The albumin to fibrinogen ratio (AFR) and monocyte to lymphocyte ratio (MLR) are non-invasive and cost-effective markers for various systemic inflammatory diseases. However, these markers have not yet been investigated for synovitis. This cross-sectional study evaluated the predictive ability of AFR and MLR in patients with non-specific knee synovitis. METHODS: One hundred fifty-five patients with knee synovitis and 108 healthy control patients were enrolled. Patient characteristics, blood parameters, AFRs, and MLRs were assessed, and the diagnostic value of these factors was determined. RESULTS: Among 125 patients included, patients with synovitis had a lower AFR and higher MLR than control subjects. The diagnostic values of AFR and MLR were 0.86 and 0.84, respectively, and higher compared with other parameters by receiver operating characteristic curve assessments. Additionally, MLR was negatively correlated with AFR. Late-stage patients showed significantly lower AFRs and significantly higher MLRs than early-stage patients. Binary logistic regression analyses indicated that AFR was an independent predictor for synovitis severity. CONCLUSIONS: The AFR and MLR had high diagnostic value for knee synovitis. The AFR was an independent predictor for synovitis severity.


Subject(s)
Quality of Life , Synovitis , Cross-Sectional Studies , Fibrinogen/analysis , Humans , Lymphocytes , Synovitis/diagnosis
12.
Talanta ; 233: 122541, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215044

ABSTRACT

The relative humidity (RH) determination is crucial in many fields. Based on the phosphorescent properties of room-temperature phosphorescent (RTP) carbon dots, the RTP carbon dots as a probe are expected to be used to rapidly detect relative humidity. In this study, matrix-free room-temperature phosphorescent N-doped carbon dots (N-CDs) were successfully prepared from urea, succinic acid, and acrylamide using a hydrothermal method. The as-synthesized N-CDs had good biocompatibility and water solubility. The N-CDs emitted blue fluorescence and green phosphorescence. Moreover, the N-CD powder exhibited stable phosphorescence with a phosphorescence lifetime of 158 ms (afterglow time to the naked eye for ~7 s). Because H2O molecules affected the afterglow time, the as-prepared N-CD test paper for the first time could be applied as a probe to monitor RH, the afterglow time of the N-CD test paper is linearly related to the RH (y = -0.0729x+7.042, R2 = 0.998) and the RH detection range is 0%-85%. And the results were consistent with those obtained using a hygrometer. In addition, the N-CD solution could also be used as an encryption ink in the advanced information security field.


Subject(s)
Carbon , Fluorescence , Humidity , Temperature
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119231, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33277209

ABSTRACT

Hypochlorite ions (ClO-) are widely used in bleaching agents and disinfectants. However, high concentrations of chloride species are harmful to human health. Therefore, effective methods for the detection of ClO- ions are required. In this study, using 4-fluorophthalic acid and glycine, nitrogen-fluorine co-doped carbon nanodots (N,F-CDs) were synthesized by one-pot hydrothermal synthesis for use as a fluorescent probe for the fluorometric detection of ClO- in aqueous media, based on the inhibition of n â†’ π* transitions. The excitation and emission peak centers of the N,F-CDs are at 387 and 545 nm, respectively. The N,F-CDs show a fast quenching response (<1 min) for ClO- and can be used in a wide pH range (pH 4-13). Under optimal conditions, the fluorescence intensity decreased with increase in the ClO- concentration from 0 to 35 µM, and a low limit of detection (9.6 nM) was achieved. This probe possesses excellent selectivity and high sensitivity and was used to analyze standardized samples of piped water, achieving a satisfactory recovery. Thus, this nitrogen-fluorine co-doped nanodot probe is promising for the detection of pollutants.

14.
Biosci Rep ; 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33270831

ABSTRACT

Traditional Chinese medicine (TCM), such as Huanglian-Jie-Du-Tang, a heat-clearing and detoxifying decoction is beneficial to alleviation of inflammation-related diseases. The objective of this study is to uncover the effect and mechanism of heat-clearing, detoxifying and blood stasis removing decoction (HDBD) on the treatment of acute soft tissue injury (STI) which is characterized with excessive inflammatory cascade at the onset. Male Sprague-Dawley (SD) rats with hammer beating served as the in vivo models of acute STI. Haematoxylin-eosin (HE) staining was used for histopathology assessment. The levels of inflammatory factors, including prostaglandin E2 (PGE2), tumor necrosis factor-αumTNF-α), interleukin (IL)-1t and IL-6 were measured by enzyme linked immunosorbent assay (ELISA). Human dermal microvascular endothelium cell line HMEC-1 and rat vascular endothelium cell line RAOEC were used to explore the mechanism in vitro. Luciferase gene reporter assay was applied to determine the relationship between miR-26b-5p and COX2. The results showed that HDBD intervention significantly reduced the temperature difference between the healthy side and affected side of rats with hammer beating, together with the decreased levels of COX2, PGE2, TNF-α, IL-6 and IL-1ß, and the increased level of miR-26b-5p. In mechanism, miR-26b-5p targeted COX2 and decreased its expression, leading to significant decreases in the levels of PGE2, TNF-α and IL-6 in RAOEC and HMEC-1 cells. In addition, miR-26b-5p inhibition impaired the effects of HDBD on the suppression of PGE2, TNF-α, IL-6 and IL-1ß in vitro. In conclusion, this study revealed that HDBD relieved acute STI via modulating miR-26b-5p/COX2 axis to inhibit inflammation.

15.
Anal Bioanal Chem ; 412(13): 3083-3090, 2020 May.
Article in English | MEDLINE | ID: mdl-32152652

ABSTRACT

2,4,6-Trinitrophenol (TNP) is widely used in our daily life; however, excessive use of TNP can lead to a large number of diseases. Therefore, it is necessary to find an effective method to detect TNP. Herein, the rapid fluorescence quenching by TNP was developed for the fluorometric determination of TNP in aqueous medium based on the internal filter effect. Nitrogen-sulfur-codoped carbon nanoparticles (N,S-CNPs), synthesized by a one-pot solvothermal method with the precursors of L-cysteine and citric acid, were applied for the determination of TNP as a fluorescent probe. The excitation peak center of N,S-CNPs and the emission peak center are 340 nm and 423 nm, respectively. The probe can be used in a variety of conditions to detect TNP due to its relatively stable properties. Meanwhile, it has a fast response time (< 1 min), wide linear response range (0.1-40 µM), and low detection limit (43.0 nM). This probe still has excellent selectivity and high sensitivity. The method was also used to detect standard water samples with a satisfactory recovery rate, and it will be used in the application of pollutants and clinical diseases. Graphical abstract.


Subject(s)
Carbon/chemistry , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Picrates/analysis , Limit of Detection , Microscopy, Electron, Transmission , Quantum Dots , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis/methods
16.
Analyst ; 145(6): 2420-2424, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32064476

ABSTRACT

The aim of this study was to develop a novel colorimetric sensing method based on enzyme-regulated instant generation of Turnbull's blue, serving as a chromogenic agent, for a sensitive immunoassay for the determination of ochratoxin A (OTA). Unlike the traditional enzyme-linked immunosorbent assay (ELISA), the chromogenic reaction reported herein relies on the immediate formation of Turnbull's blue. K3[Fe(CN)6] rapidly forms a coordinate bond with iron(ii), yielding a blue product. Meanwhile, glucose oxidase (GOx) catalyzes glucose hydrolysis to produce hydrogen peroxide (H2O2), which was used to inhibit the formation of Turnbull's blue by oxidizing iron(ii) to iron(iii). Thus, Turnbull's blue was generated in an enzyme-regulated manner. Accordingly, a competitive-type colorimetric enzyme immunoassay was established using a GOx based nanolabel. Under optimal conditions, the absorbance increased upon increasing the target OTA concentration in the range of 0.01-10 ng mL-1 with a detection limit of 8.3 pg mL-1 estimated at the 3Sblank level. The assay accuracy was validated by analyzing spiked wine samples. The present results potentially provide novel insights into the development of Turnbull's blue-based biological detection methods and colorimetric immunoassay strategies.


Subject(s)
Chromogenic Compounds/chemistry , Colorimetry/methods , Ferrocyanides/chemistry , Ochratoxins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Glucose/chemistry , Glucose Oxidase/chemistry , Hydrogen Peroxide/chemistry , Hydrolysis , Limit of Detection , Wine/analysis
17.
Mikrochim Acta ; 185(2): 92, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29594447

ABSTRACT

The authors describe a colorimetric immunoassay for the model nalyte aflatoxin B1 (AFB1). It is based on the just-in-time generation of an MnO2 nanocatalyst. Unlike previously developed immunoassay, the chromogenic reaction relies on the just-in-time formation of an oxidase mimic without the aid of the substrate. Potassium permanganate (KMnO4) is converted into manganese dioxide (MnO2) which acts as an oxidase mimic that catalyzes the oxidation 3,3',5,5'-tetramethylbenzidine (TMB) by oxygen to give a blue colored product. In the presence of ascorbic acid (AA), KMnO4 is reduced to Mn(II) ions. This results in a decrease in the amount of MnO2 nanocatalyst. Hence, the oxidation of TMB does not take place. By adding ascorbate oxidase, AA is converted into dehydroascorbic acid which cannot reduce KMnO4. Based on these observations, a colorimetric competitive enzyme immunoassay was developed where ascorbate oxidase and gold nanoparticle-labeled antibody against AFB1 and magnetic beads carrying bovine serum albumin conjugated to AFB1 are used for the determination of AFB1. In presence of AFB1, it will compete with the BSA-conjugated AFB1 (on the magnetic beads) for the labeled antibody against AFB1 on the gold nanoparticles. This makes the amount of ascorbate oxidase/anti-AFB1 antibody-labeled gold nanoparticles, which conjugated on magnetic beads, reduce, and resulted in an increase of ascorbic acid. Under optimal conditions, the absorbance (measured at 652 nm) decreases with increasing AFB1 concentrations in the range from 0.1 to 100 ng mL-1, with a 0.1 ng mL-1 detection limit (at the 3Sblank level). The accuracy of the assay was validated by analyzing spiked peanut samples. The results matched well with those obtained with a commercial ELISA kit. Conceivably, the method is not limited to aflatoxins but has a wide scope in that it may be applied to many other analytes for which respective antibodies are available. Graphical abstract Schematic illustration of ascorbate oxidase (AOx)-mediated potassium permanganate (KMnO4)-responsive ascorbic acid (AA) for visual colorimetric immunoassay of aflatoxin B1 (AFB1) by coupling with hydrolytic reaction of AOx toward AA and the KMnO4-Mn(II)-TMB system [note: 3,3',5,5'-tetramethylbenzidine: TMB].


Subject(s)
Aflatoxin B1/analysis , Colorimetry/methods , Immunoassay/methods , Aflatoxin B1/immunology , Antibodies/immunology , Arachis/microbiology , Ascorbate Oxidase , Benzidines/chemistry , Catalysis , Food Contamination/analysis , Gold , Manganese Compounds , Oxides , Serum Albumin
18.
Biosens Bioelectron ; 89(Pt 1): 645-651, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-26725933

ABSTRACT

A new colorimetric immunosensing platform accompanying enzyme cascade amplification strategy was fabricated for quantitative screening of small-molecular mycotoxins (aflatoxin B1, AFB1 used in this case) coupling with enzyme-controlled dissolution of MnO2 nanoflakes. The visual colored assay was executed by high-efficient MnO2-3,3',5,5'-tetramethylbenzidine (TMB) system (blue). In the presence of ascorbic acid, MnO2 nanoflakes were dissolved into Mn2+ ions, thus resulting in a perceptible color change from blue to colorless. The reaction could be weakened through ascorbate oxidase to catalyze ascorbic acid into dehydroascorbic acid, which indirectly depended on the concentration of ascorbate oxidase. By using ascorbate oxidase/ anti-AFB1 antibody-labeled gold nanoparticles, a novel competitive-type colorimetric enzyme immunoassay was developed for detection of AFB1 on AFB1-bovine serum albumin (BSA)-conjugated magnetic beads. Upon addition of target AFB1, the analyte competed with the conjugated AFB1-BSA on the magnetic beads for the labeled anti-AFB1 antibody on the gold nanoparticles. Under optimal conditions, the absorbance decreased with increasing target AFB1 within the dynamic range of 0.05-150ngmL-1 with a detection limit of 6.5pgmL-1 at the 3Sblank level. The precision and specificity of the MnO2-TMB-based immunosensing system were acceptable. In addition, method accuracy was further validated for monitoring spiked peanut samples, giving results matched well with those obtained from commercialized AFB1 ELISA kit.


Subject(s)
Aflatoxin B1/analysis , Arachis/microbiology , Biosensing Techniques/methods , Food Contamination/analysis , Manganese Compounds/chemistry , Nanostructures/chemistry , Oxides/chemistry , Animals , Antibodies, Immobilized/chemistry , Arachis/chemistry , Ascorbate Oxidase/chemistry , Aspergillus flavus/chemistry , Benzidines/chemistry , Cattle , Colorimetry/methods , Food Microbiology , Gold/chemistry , Immunoassay/methods , Limit of Detection , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Nanostructures/ultrastructure , Serum Albumin, Bovine/chemistry , Solubility
19.
Biosens Bioelectron ; 80: 249-256, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26851583

ABSTRACT

We designed a new colorimetric immunoassay for sensitive monitoring of brevetoxin B (BTB) using enzyme-controlled Fenton reaction with a high-resolution 3,3',5,5'-tetramethylbenzidine (TMB)-based visual colored system. Upon addition of hydrogen peroxide (H2O2), the equivalent iron(II) could be first converted into iron(III) and free hydroxyl radical (•OH) via the classical Fenton reaction. Then the as-produced iron(III) and •OH could cause a perceptible change from colorless to blue with the increasing H2O2 concentration in the presence of TMB. Based on Fenton reaction-triggered visual colored system, a novel competitive-type colorimetric enzyme immunoassay was developed for the quantitative screening of target BTB on the bovine serum albumin-BTB-modified magnetic bead using glucose oxidase/anti-BTB antibody-labeled gold nanoparticle as the signal-transduction tag. Upon target BTB introduction, the analyte competed with the conjugated BTB on the magnetic bead for anti-BTB antibody on gold nanoparticle. The carried glucose oxidase with the gold nanoparticle could implement the oxidation of glucose to produce H2O2, and the generated H2O2 promoted the above-mentioned Fenton reaction for color development. Under the optimal conditions, the absorbance decreased with the increasing target BTB in the range from 0.1 to 150 ng kg(-1) with a low detection limit (LOD) of 0.076 ng kg(-1). The LOD was 500-fold lower than that of commercialized Abraxis BTB ELISA kit. Non-specific adsorption was not observed. The precision, reproducibility and specificity were acceptable. Finally, the method accuracy was also validated for monitoring spiked seafood samples, giving results well matched with the referenced brevetoxin ELISA kit.


Subject(s)
Biosensing Techniques , Enzyme-Linked Immunosorbent Assay , Immunoassay , Marine Toxins/isolation & purification , Oxocins/isolation & purification , Colorimetry , Gold/chemistry , Hydrogen Peroxide/chemistry , Hydroxyl Radical/chemistry , Iron/chemistry , Limit of Detection , Marine Toxins/chemistry , Oxocins/chemistry
20.
Anal Chem ; 87(18): 9473-80, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26291091

ABSTRACT

Photoelectrochemical (PEC) detection is an emerging and promising analytical tool. However, its actual application still faces some challenges like potential damage of biomolecules (caused by itself system) and intrinsic low-throughput detection. To solve the problems, herein we design a novel split-type photoelectrochemical immunoassay (STPIA) for ultrasensitive detection of prostate specific antigen (PSA). Initially, the immunoreaction was performed on a microplate using a secondary antibody/primer-circular DNA-labeled gold nanoparticle as the detection tag. Then, numerously repeated oligonucleotide sequences with many biotin moieties were in situ synthesized on the nanogold tag via RCA reaction. The formed biotin concatamers acted as a powerful scaffold to bind with avidin-alkaline phosphatase (ALP) conjugates and construct a nanoenzyme reactor. By this means, enzymatic hydrolysate (ascorbic acid) was generated to capture the photogenerated holes in the CdS quantum dot-sensitized TiO2 nanotube arrays, resulting in amplification of the photocurrent signal. To elaborate, the microplate-based immunoassay and the high-throughput detection system, a semiautomatic detection cell (installed with a three-electrode system), was employed. Under optimal conditions, the photocurrent increased with the increasing PSA concentration in a dynamic working range from 0.001 to 3 ng mL(-1), with a low detection limit (LOD) of 0.32 pg mL(-1). Meanwhile, the developed split-type photoelectrochemical immunoassay exhibited high specificity and acceptable accuracy for analysis of human serum specimens in comparison with referenced electrochemiluminescence immunoassay method. Importantly, the system was not only suitable for the sandwich-type immunoassay mode, but also utilized for the detection of small molecules (e.g., aflatoxin B1) with a competitive-type assay format.


Subject(s)
Alkaline Phosphatase/metabolism , Immunoassay/methods , Photochemical Processes , Prostate-Specific Antigen/analysis , Quantum Dots/chemistry , Avidin/metabolism , Base Sequence , Cadmium Compounds/chemistry , DNA/chemistry , DNA/genetics , DNA Primers/genetics , Electrochemistry , Humans , Limit of Detection , Models, Molecular , Nanotubes/chemistry , Nucleic Acid Conformation , Prostate-Specific Antigen/blood , Sulfides/chemistry , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL