Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14673, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918427

ABSTRACT

Visual assessment, while the primary method for pigmentation and erythema evaluation in clinical practice, is subjective, time-consuming, and may lead to variability in observations among clinicians. Objective and quantitative techniques are required for a precise evaluation of the disease's severity and the treatment's efficacy. This research examines the precision and utility of a newly developed skin imaging system in assessing pigmentation and erythema. Sixty participants were recruited, and their facial images were analyzed with the new OBSERV 520 x skin imaging system, compared to DERMACATCH for regional analysis and VISIA for full-face examination. The degree of skin pigmentation was clinically graded using the MASI scores evaluated by dermatologists. The data revealed positive correlations between the novel skin imaging system and the two conventional instruments in quantifying pigmentation and erythema, whether in regional or full-face analysis. Furthermore, the new skin imaging system positively correlated with the clinical MASI scores (r = 0.4314, P < 0.01). In contrast, our study found no significant correlation between the traditional system and clinical assessment, indicating a more substantial capacity for hyperpigmentation assessment in the new system. Our study validates the innovative skin imaging system's accuracy in evaluating pigmentation and erythema, demonstrating its feasibility for quantitative evaluation in both clinical and research purposes.


Subject(s)
Erythema , Face , Skin Pigmentation , Humans , Female , Male , Adult , Erythema/diagnostic imaging , Face/diagnostic imaging , Middle Aged , Skin/diagnostic imaging , Skin/pathology , Young Adult , Inflammation/diagnostic imaging , Aged , Pigmentation Disorders/diagnostic imaging , Pigmentation Disorders/diagnosis , Hyperpigmentation/diagnostic imaging
2.
Phytomedicine ; 128: 155501, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471318

ABSTRACT

BACKGROUND: The discovering of an osteoclast (OC) coupling active agent, capable of suppressing OC-mediated bone resorption while concurrently stimulating osteoblast (OB)-mediated bone formation, presents a promising strategy to overcome limitations associated with existing antiresorptive agents. However, there is a lack of research on active OC coupling agents. PURPOSE: This study aims to investigate the potential of Jiangu Formula (JGF) in inhibiting OCs while maintaining the OCOB coupling function. METHODS: The anti-osteoporosis efficacy of JGF was evaluated in osteoporosis models induced by ovariectomy in C57BL/6 mouse and SD rats. The effect of JGF on OCs was evaluated by detecting its capacity to inhibit OC differentiation and bone resorption in an in vitro osteoclastogenesis model induced by RANKL. The OCOB coupling activity of JGF was evaluated by measuring the secretion levels of OC-derived coupling factors, OB differentiation activity of MC3T3-E1 interfered with conditioned medium, and the effect of JGF on OC inhibition and OB differentiation in a C3H10T1/2-RAW264.7 co-culture system. The mechanism of JGF was studied by network pharmacology and validated using western blot, immunofluorescence (IF), and ELISA. Following that, the active ingredients of JGF were explored through a chemotype-assembly approach, activity evaluation, and LC-MS/MS analysis. RESULTS: JGF inhibited bone resorption in murine osteoporosis without compromising the OCOB coupling effect on bone formation. In vitro assays showed that JGF preserved the coupling effect of OC on OB differentiation by maintaining the secretion of OC-derived coupling factors. Network analysis predicted STAT3 as a key regulation point for JGF to exert anti-osteoporosis effect. Further validation assays confirmed that JGF upregulated p-STAT3(Ser727) and its regulatory factors IL-2 in RANKL-induced RAW264.7 cells. Moreover, 23 components in JGF with anti-OC activity identified by chemotype-assembly approach and verification experiments. Notably, six compounds, including ophiopogonin D, ginsenoside Re, ginsenoside Rf, ginsenoside Rg3, ginsenoside Ro, and ononin were identified as OC-coupling compounds. CONCLUSION: This study first reported JGF as an agent that suppresses bone loss without affecting bone formation. The potential coupling mechanism of JGF involves the upregulation of STAT3 by its regulators IL-2. Additionally, the chemotype-assembly approach elucidated the activity compounds present in JGF, offering a novel strategy for developing an anti-resorption agent that preserves bone formation.


Subject(s)
Bone Resorption , Cell Differentiation , Drugs, Chinese Herbal , Mice, Inbred C57BL , Osteoblasts , Osteoclasts , Osteoporosis , Rats, Sprague-Dawley , Animals , Osteoclasts/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , Osteoporosis/drug therapy , Osteoblasts/drug effects , Female , RAW 264.7 Cells , Cell Differentiation/drug effects , Bone Resorption/drug therapy , Ovariectomy , RANK Ligand , Rats , Osteogenesis/drug effects , Disease Models, Animal , STAT3 Transcription Factor/metabolism
3.
Bioengineering (Basel) ; 11(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38391682

ABSTRACT

Vitiligo, a psychologically distressing pigmentary disorder characterized by white depigmented patches due to melanocyte loss, necessitates non-invasive tools for early detection and treatment response monitoring. High-cellular-resolution full-field optical coherence tomography (CRFF-OCT) is emerging in pigmentary disorder assessment, but its applicability in vitiligo repigmentation after tissue grafting remains unexplored. To investigate the feasibility of CRFF-OCT for evaluating vitiligo lesions following tissue grafting, our investigation involved ten vitiligo patients who underwent suction blister epidermal grafting and laser ablation at a tertiary center between 2021 and 2022. Over a six-month period, clinical features, dermoscopy, and photography data were recorded. Utilizing CRFF-OCT along with artificial intelligence (AI) applications, repigmentation features were captured and analyzed. The CRFF-OCT analysis revealed a distinct dark band in vitiligo lesion skin, indicating melanin loss. Grafted areas exhibited melanocytes with dendrites around the epidermal-dermal junction and hair follicles. CRFF-OCT demonstrated its efficacy in the early detection of melanocyte recovery and accurate melanin quantification. This study introduces CRFF-OCT as a real-time, non-invasive, and in vivo evaluation tool for assessing vitiligo repigmentation, offering valuable insights into pigmentary disorders and treatment responses.

4.
Front Pharmacol ; 13: 881078, 2022.
Article in English | MEDLINE | ID: mdl-35959429

ABSTRACT

Background: Promoting cholesterol reverse transport (RCT) has been proven to be a promising hyperlipidemia therapy since it is more effective for the treatment of atherosclerosis (AS) caused by hyperlipidemia. Liver X receptor (LXR) agonists can accelerate RCT, but most of them trigger undesirable liver steatosis due to the activation of liver LXRα. Aim: We aim to figure out whether isochlorogenic acid C (ICAC) facilitates RCT without causing hepatic steatosis. Methods: In vitro study, we established foam macrophages and macrophages with loaded NBD-cholesterol models to investigate the competence of RCT promoting ICAC. RT-qPCR and Western blot were used to verify ICAC's regulation of RCT and NF-κB inflammatory pathways. In this in vivo study, male 6-week-old C57BL/6 mice were fed a high-fat diet (HFD) to investigate ICAC's anti-hyperlipidemic effect and its functions in regulating RCT. The anti-hyperlipidemic effect of ICAC was evaluated by blood and liver lipid levels, liver hematoxylin, oil red o staining, and liver coefficient. Finally, mRNA levels of genes involved in RCT and inflammation pathways in the liver and intestine were detected by RT-qPCR. Results: ICAC prevented macrophages from foaming by up-regulating the LXRα mediated RCT pathway and down-regulating expression of the cholesterol absorption genes LDLR and CD36, as well as suppressing iNOS, COX2, and IL-1ß inflammatory factors. In HFD-fed mice, ICAC significantly lowered the lipid level both in the serum and the liver. Mechanistic studies showed that ICAC strengthened the RCT pathway in the liver and intestine but didn't affect liver LXRα. Furthermore, ICAC impeded both adipogenesis and the inflammatory response in the liver. Conclusion: ICAC accelerated RCT without affecting liver LXRα, thus resulting in a lipid-lowering effect without increasing liver adipogenesis. Our results indicated that ICAC could be a new RCT promoter for hyperlipidemia treatment without causing liver steatosis.

5.
Article in English | MEDLINE | ID: mdl-35509628

ABSTRACT

Taxus yunnanensis is a paclitaxel-containing herb with traditional usage in cancer treatment, and its extract possesses great oral bioavailability of paclitaxel. However, it is elusive whether paclitaxel-containing extract (HDS-1) can exert anti-tumor effect through oral administration and how other components contribute to its efficacy. Therefore, we investigate the oral-route anti-tumor effect of HDS-1 in A549-bearing mice. HDS-1-derived flavonoids (HDS-2) and lignoids (HDS-3) are hypothesized to contribute to HDS-1's efficacy, and their effects of enhancing enterocytic absorption and cytotoxicity of paclitaxel are validated in 2 permeability experiments and apoptosis-related assay, respectively. In vivo, A549 growth is significantly inhibited by 86.1 ± 12.94% (P < 0.01) at 600 mg/kg of HDS-1 and 65.7 ± 38.71% (P < 0.01) at 200 mg/kg. HDS-2 and HDS-3 significantly reduce the efflux ratio of paclitaxel to 2.33 and 3.70, respectively, in Caco-2 permeability experiment and reduce paclitaxel reflux in MDCK-MDR1 experiment. Furthermore, HDS-2 and HDS-3 potentiated paclitaxel-induced cytotoxicity by 19.1-22.45% (P < 0.05) and 10.52-18.03% (P < 0.05), respectively, inhibited the expression of cyclinB1, Bcl-2, and pMCL-1, and increased the percentage of necrosis cell in the condition of paclitaxel exposure. Conclusively, paclitaxel-containing extracts exert anti-cancer effects through oral administration, and flavonoid and lignoids contribute to its anti-cancer effect through simultaneously improving enterocytic absorption of paclitaxel and the cytotoxic effect of paclitaxel.

6.
Food Sci Nutr ; 10(1): 21-38, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35035907

ABSTRACT

Cordyceps militaris (CM) is traditionally used as dietary therapy for lung cancer patients in China. CM extract (CME) is hydrosoluble fraction of CM and extensively investigated. Caspase-3-involved cell death is considered as its major anticancer mechanism but inconclusive. Therefore, we explore its caspase-3-dependent programmed cell death nature (apoptosis and pyroptosis) and validate its caspase-3-dependent property in loss-of-function experiment. Component profile of CME is detected by High Performance Liquid Chromatography- quadrupole time-of-flight mass spectrometry (HPLC-qTOF). Results show that CME causes pyroptosis-featured cell bubbling and cell lysis and inhibits cell proliferation in A549 cell. CME induces chromatin condensing and makes PI+/annexin V+ staining in bubbling cells, indicating genotoxicity, apoptosis, and pyroptosis cell death are caused by CME. High concentration of CME (200 µg/ml) exerts G2/M and G0 cell cycles arresting and suppresses P53-downstream proliferative proteins, including P53, P21, CDC25B, CyclinB1, Bcl-2, and BCL2 associated agonist of cell death (BAD), but 1-100 µg/ml of CME show less effect on proteins above. Correspondingly, caspase-3 activity and caspase-3 downstream proteins including pyroptotic effector gasdermin-E (GSDME) and apoptotic marker cleaved-poly-ADP-ribose polymerase (PARP) are significantly promoted by CME. Moreover, regarding membrane pore formation in pyroptotic cell, expression of membrane GSDME (GSDME antibody conjugated with PE-Cy7 for detection in flow cytometry) is remarkably increased by CME treatment. By contrast, other pyroptosis-related proteins such as P2X7, NLRP3, GSDMD, and Caspase-1 are not affected after CME treatment. Additionally, TET2 is unexpectedly raised by CME. In present of caspase-3 inhibitor Ac-DEVD-CHO (Ac-DC), CME-induced cytotoxicity, cell bubbling, and genotoxicity are reduced, and CME-induced upregulation of apoptosis (cleaved-PARP-1) and pyroptosis (GSDME-NT) proteins are reversed. Lastly, 22 components are identified in HPLC-qTOF experiment, and they are classified into trophism, neoadjuvant component, cytotoxic component, and cancer deterioration promoter according to previous references. Conclusively, CME causes caspase-3-dependent apoptosis and pyroptosis in A549 through caspase-3/PARP and caspase-3/GSDME pathways, and it provides basic insight into clinic application of CME for cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL