Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
New Phytol ; 240(6): 2436-2454, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37840365

ABSTRACT

Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.


Subject(s)
Glycine max , Transcriptome , Glycine max/genetics , Transcriptome/genetics , Plant Breeding , Quantitative Trait Loci , Seeds/genetics
2.
J Integr Plant Biol ; 65(8): 1983-2000, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37066995

ABSTRACT

Seed weight is usually associated with seed size and is one of the important agronomic traits that determine yield. Understanding of seed weight control is limited, especially in soybean plants. Here we show that Glycine max JASMONATE-ZIM DOMAIN 3 (GmJAZ3), a gene identified through gene co-expression network analysis, regulates seed-related traits in soybean. Overexpression of GmJAZ3 promotes seed size/weight and other organ sizes in stable transgenic soybean plants likely by increasing cell proliferation. GmJAZ3 interacted with both G. max RESPONSE REGULATOR 18a (GmRR18a) and GmMYC2a to inhibit their transcriptional activation of cytokinin oxidase gene G. max CYTOKININ OXIDASE 3-4 (GmCKX3-4), which usually affects seed traits. Meanwhile, the GmRR18a binds to the promoter of GmMYC2a and activates GmMYC2a gene expression. In GmJAZ3-overexpressing soybean seeds, the protein contents were increased while the fatty acid contents were reduced compared to those in the control seeds, indicating that the GmJAZ3 affects seed size/weight and compositions. Natural variation in JAZ3 promoter region was further analyzed and Hap3 promoter correlates with higher promoter activity, higher gene expression and higher seed weight. The Hap3 promoter may be selected and fixed during soybean domestication. JAZ3 orthologs from other plants/crops may also control seed size and weight. Taken together, our study reveals a novel molecular module GmJAZ3-GmRR18a/GmMYC2a-GmCKXs for seed size and weight control, providing promising targets during soybean molecular breeding for better seed traits.


Subject(s)
Glycine max , Seeds , Glycine max/metabolism , Phenotype , Seeds/genetics , Seeds/metabolism , Gene Expression Profiling , Fatty Acids/metabolism
3.
J Integr Plant Biol ; 65(7): 1636-1650, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36866859

ABSTRACT

Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.


Subject(s)
Droughts , Glycine max , Glycine max/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Plants, Genetically Modified/metabolism , Stress, Physiological , Zinc/metabolism , Gene Expression Regulation, Plant
4.
Curr Issues Mol Biol ; 44(7): 3194-3207, 2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35877445

ABSTRACT

Phytophthora root rot (PRR) is a destructive disease of soybeans (Glycine max (L.) Merr) caused by Phytophthora sojae (P. sojae). The most effective way to prevent the disease is growing resistant or tolerant varieties. Partial resistance provides a more durable resistance against the pathogen compared to complete resistance. Wild soybean (Glycine soja Sieb. & Zucc.) seems to be an extraordinarily important gene pool for soybean improvement due to its high level of genetic variation. In this study, 242 wild soybean germplasms originating from different regions of Heilongjiang province were used to identify resistance genes to P. sojae race 1 using a genome-wide association study (GWAS). A total of nine significant SNPs were detected, repeatedly associated with P. sojae resistance and located on chromosomes 1, 10, 12, 15, 17, 19 and 20. Among them, seven favorable allelic variations associated with P. sojae resistance were evaluated by a t-test. Eight candidate genes were predicted to explore the mechanistic hypotheses of partial resistance, including Glysoja.19G051583, which encodes an LRR receptor-like serine/threonine protein kinase protein, Glysoja.19G051581, which encodes a receptor-like cytosolic serine/threonine protein kinase protein. These findings will provide additional insights into the genetic architecture of P. sojae resistance in a large sample of wild soybeans and P. sojae-resistant breeding through marker-assisted selection.

5.
New Phytol ; 231(2): 661-678, 2021 07.
Article in English | MEDLINE | ID: mdl-33864683

ABSTRACT

Soybean (Glycine max) is one of the most important oilseed crops. However, the regulatory mechanism that governs the process of oil accumulation in soybean remains poorly understood. In this study, GmZF392, a tandem CCCH zinc finger (TZF) protein which was identified in our previous RNA-seq analysis of seed-preferred transcription factors, was found to function as a positive regulator of lipid production. GmZF392 promotes seed oil accumulation in both transgenic Arabidopsis and stable transgenic soybean plants by binding to a bipartite cis-element, containing TG- and TA-rich sequences, in promoter regions, activating the expression of genes in the lipid biosynthesis pathway. GmZF392 physically interacts with GmZF351, our previously identified transcriptional regulator of lipid biosynthesis, to synergistically promote downstream gene expression. Both GmZF392 and GmZF351 are further upregulated by GmNFYA, another transcription factor involved in lipid biosynthesis, directly (in the former case) and indirectly (in the latter case). Promoter sequence diversity analysis showed that the GmZF392 promoter may have been selected at the origin of the Glycine genus and further mildly selected during domestication from wild soybeans to cultivated soybeans. Our study reveals a regulatory module containing three transcription factors in the lipid biosynthesis pathway, and manipulation of the module may improve oil production in soybean and other oilseed crops.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Lipids , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Seeds/metabolism , Glycine max/genetics , Glycine max/metabolism
6.
Insect Sci ; 27(5): 1019-1030, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31271503

ABSTRACT

The soybean aphid, Aphis glycines, is an extreme specialist and an important invasive pest that relies on olfaction for behaviors such as feeding, mating, and foraging. Odorant-binding proteins (OBPs) play a vital role in olfaction by binding to volatile compounds and by regulating insect sensing of the environment. In this work we used rapid amplification of complementary DNA ends technology to identify and characterize 10 genes encoding A. glycines OBPs (AglyOBPs) belonging to 3 subfamilies, including 4 classic OBPs, 5 Plus-C OBPs, and one Minus-C OBP. Quantitative real-time polymerase chain reaction demonstrated variable specific expression patterns for the 10 genes based on developmental stage and aphid tissue sampled. Expression levels of 7 AglyOBPs (2, 3, 4, 5, 7, 9, and 10) were highest in the 4th instar, indicating that the 4th nymphal instar is an important developmental period during which soybean aphids regulate feeding and search for host plants. Tissue-specific expression results demonstrated that AglyOBP2, 7, and 9 exhibited significantly higher expression levels in antennae. Meanwhile, ligand-binding analysis of 5 OBPs demonstrated binding of AglyOBP2 and AglyOBP3 to a broad spectrum of volatiles released by green leaf plants, with bias toward 6- to 8-carbon chain volatiles and strong binding of AglyOBP7 to trans-ß-farnesene. Taken together, our findings build a foundation of knowledge for use in the study of molecular olfaction mechanisms and provide insights to guide future soybean aphid research.


Subject(s)
Aphids/genetics , Insect Proteins/genetics , Receptors, Odorant/genetics , Transcriptome , Animals , Aphids/growth & development , Female , Insect Proteins/chemistry , Insect Proteins/metabolism , Nymph/genetics , Nymph/growth & development , Organ Specificity , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism
7.
New Phytol ; 225(1): 268-283, 2020 01.
Article in English | MEDLINE | ID: mdl-31400247

ABSTRACT

Soybean (Glycine max) production is severely affected in unfavorable environments. Identification of the regulatory factors conferring stress tolerance would facilitate soybean breeding. In this study, through coexpression network analysis of salt-tolerant wild soybeans, together with molecular and genetic approaches, we revealed a previously unidentified function of a class B heat shock factor, HSFB2b, in soybean salt stress response. We showed that HSFB2b improves salt tolerance through the promotion of flavonoid accumulation by activating one subset of flavonoid biosynthesis-related genes and by inhibiting the repressor gene GmNAC2 to release another subset of genes in the flavonoid biosynthesis pathway. Moreover, four promoter haplotypes of HSFB2b were identified from wild and cultivated soybeans. Promoter haplotype II from salt-tolerant wild soybean Y20, with high promoter activity under salt stress, is probably selected for during domestication. Another promoter haplotype, III, from salt-tolerant wild soybean Y55, had the highest promoter activity under salt stress, had a low distribution frequency and may be subjected to the next wave of selection. Together, our results revealed the mechanism of HSFB2b in soybean salt stress tolerance. Its promoter variations were identified, and the haplotype with high activity may be adopted for breeding better soybean cultivars that are adapted to stress conditions.


Subject(s)
Domestication , Flavonoids/biosynthesis , Glycine max/physiology , Heat-Shock Proteins/metabolism , Plant Proteins/metabolism , Salt Tolerance/physiology , Base Sequence , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Genetic Association Studies , Haplotypes/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Binding/genetics , Salt Tolerance/drug effects , Sodium Chloride/pharmacology , Glycine max/drug effects , Glycine max/genetics , Transcription Factors/metabolism , Transcriptome/drug effects , Transcriptome/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
8.
Mol Plant ; 10(5): 670-684, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28363587

ABSTRACT

Cultivated soybeans may lose some useful genetic loci during domestication. Introgression of genes from wild soybeans could broaden the genetic background and improve soybean agronomic traits. In this study, through whole-genome sequencing of a recombinant inbred line population derived from a cross between a wild soybean ZYD7 and a cultivated soybean HN44, and mapping of quantitative trait loci for seed weight, we discovered that a phosphatase 2C-1 (PP2C-1) allele from wild soybean ZYD7 contributes to the increase in seed weight/size. PP2C-1 may achieve this function by enhancing cell size of integument and activating a subset of seed trait-related genes. We found that PP2C-1 is associated with GmBZR1, a soybean ortholog of Arabidopsis BZR1, one of key transcription factors in brassinosteroid (BR) signaling, and facilitate accumulation of dephosphorylated GmBZR1. In contrast, the PP2C-2 allele with variations of a few amino acids at the N-terminus did not exhibit this function. Moreover, we showed that GmBZR1 could promote seed weight/size in transgenic plants. Through analysis of cultivated soybean accessions, we found that 40% of the examined accessions do not have the PP2C-1 allele, suggesting that these accessions can be improved by introduction of this allele. Taken together, our study identifies an elite allele PP2C-1, which can enhance seed weight and/or size in soybean, and pinpoints that manipulation of this allele by molecular-assisted breeding may increase production in soybean and other legumes/crops.


Subject(s)
Glycine max/genetics , Plant Proteins/genetics , Protein Phosphatase 2C/genetics , Quantitative Trait Loci , Seeds/genetics , Alleles , Chromosome Mapping , Crops, Agricultural/genetics , Crosses, Genetic , DNA, Plant , Genes, Plant , Phosphorylation , Plants, Genetically Modified , Sequence Analysis, DNA , Transcription Factors/metabolism
9.
Plant Physiol ; 173(4): 2208-2224, 2017 04.
Article in English | MEDLINE | ID: mdl-28184009

ABSTRACT

Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops.


Subject(s)
Glycine max/metabolism , Plant Oils/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Zinc Fingers , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Domestication , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Lipid Metabolism/genetics , Lipids/biosynthesis , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Seeds/genetics , Sequence Homology, Amino Acid , Glycine max/genetics , Glycine max/physiology , Triglycerides/metabolism
10.
Plant J ; 86(6): 530-44, 2016 06.
Article in English | MEDLINE | ID: mdl-27062090

ABSTRACT

Cultivated soybean has undergone many transformations during domestication. In this paper we report a comprehensive assessment of the evolution of gene co-expression networks based on the analysis of 40 transcriptomes from developing soybean seeds in cultivated and wild soybean accessions. We identified 2680 genes that are differentially expressed during seed maturation and established two cultivar-specific gene co-expression networks. Through analysis of the two networks and integration with quantitative trait locus data we identified two potential key drivers for seed trait formation, GA20OX and NFYA. GA20OX encodes an enzyme in a rate-limiting step of gibberellin biosynthesis, and NFYA encodes a transcription factor. Overexpression of GA20OX and NFYA enhanced seed size/weight and oil content, respectively, in seeds of transgenic plants. The two genes showed significantly higher expression in cultivated than in wild soybean, and the increases in expression were associated with genetic variations in the promoter region of each gene. Moreover, the expression of GA20OX and NFYA in seeds of soybean accessions correlated with seed weight and oil content, respectively. Our study reveals transcriptional adaptation during soybean domestication and may identify a mechanism of selection by expression for seed trait formation, providing strategies for future breeding practice.


Subject(s)
Glycine max/genetics , Quantitative Trait Loci/genetics , Seeds/genetics , Transcriptome/genetics , Domestication , Genotype , Plants, Genetically Modified/genetics
11.
Plant J ; 83(2): 224-36, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25990284

ABSTRACT

Soybean (Glycine max) is an important crop for oil and protein resources worldwide. The molecular mechanism of the abiotic stress response in soybean is largely unclear. We previously identified multiple stress-responsive WRKY genes from soybean. Here, we further characterized the roles of one of these genes, GmWRKY27, in abiotic stress tolerance using a transgenic hairy root assay. GmWRKY27 expression was increased by various abiotic stresses. Over-expression and RNAi analysis demonstrated that GmWRKY27 improves salt and drought tolerance in transgenic soybean hairy roots. Measurement of physiological parameters, including reactive oxygen species and proline contents, supported this conclusion. GmWRKY27 inhibits expression of a downstream gene GmNAC29 by binding to the W-boxes in its promoter region. The GmNAC29 is a negative factor of stress tolerance as indicated by the performance of transgenic hairy roots under stress. GmWRKY27 interacts with GmMYB174, which also suppresses GmNAC29 expression and enhances drought stress tolerance. The GmWRKY27 and GmMYB174 may have evolved to bind to neighbouring cis elements in the GmNAC29 promoter to co-reduce promoter activity and gene expression. Our study discloses a valuable mechanism in soybean for regulation of the stress response by two associated transcription factors. Manipulation of these genes should facilitate improvements in stress tolerance in soybean and other crops.


Subject(s)
Adaptation, Physiological , Glycine max/metabolism , Plant Proteins/metabolism , Stress, Physiological , Genes, Plant , Plant Proteins/genetics , Promoter Regions, Genetic , Protein Binding , Glycine max/genetics , Glycine max/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...