Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 26(1): 73, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509602

ABSTRACT

BACKGROUND: Pain from osteoarthritis (OA) is one of the top causes of disability worldwide, but effective treatment is lacking. Nociceptive factors are released by activated synovial macrophages in OA, but depletion of synovial macrophages paradoxically worsens inflammation and tissue damage in previous studies. Rather than depleting macrophages, we hypothesized that inhibiting macrophage activation may improve pain without increasing tissue damage. We aimed to identify key mechanisms mediating synovial macrophage activation and test the role of STAT signaling in macrophages on pain outcomes in experimental knee OA. METHODS: We induced experimental knee OA in rats via knee destabilization surgery, and performed RNA sequencing analysis on sorted synovial tissue macrophages to identify macrophage activation mechanisms. Liposomes laden with STAT1 or STAT6 inhibitors, vehicle (control), or clodronate (depletion control) were delivered selectively to synovial macrophages via serial intra-articular injections up to 12 weeks after OA induction. Treatment effects on knee and hindpaw mechanical pain sensitivity were measured during OA development, along with synovitis, cartilage damage, and synovial macrophage infiltration using histopathology and immunofluorescence. Lastly, crosstalk between drug-treated synovial tissue and articular chondrocytes was assessed in co-culture. RESULTS: The majority of pathways identified by transcriptomic analyses in OA synovial macrophages involve STAT signaling. As expected, macrophage depletion reduced pain, but increased synovial tissue fibrosis and vascularization. In contrast, STAT6 inhibition in macrophages led to marked, sustained improvements in mechanical pain sensitivity and synovial inflammation without worsening synovial or cartilage pathology. During co-culture, STAT6 inhibitor-treated synovial tissue had minimal effects on healthy chondrocyte gene expression, whereas STAT1 inhibitor-treated synovium induced changes in numerous cartilage turnover-related genes. CONCLUSION: These results suggest that STAT signaling is a major mediator of synovial macrophage activation in experimental knee OA. STAT6 may be a key mechanism mediating the release of nociceptive factors from macrophages and the development of mechanical pain sensitivity. Whereas therapeutic depletion of macrophages paradoxically increases inflammation and fibrosis, blocking STAT6-mediated synovial macrophage activation may be a novel strategy for OA-pain management without accelerating tissue damage.


Subject(s)
Osteoarthritis, Knee , STAT6 Transcription Factor , Animals , Rats , Fibrosis , Inflammation/pathology , Macrophage Activation , Osteoarthritis, Knee/pathology , Pain/pathology , Synovial Membrane/pathology , STAT6 Transcription Factor/metabolism
3.
J Biol Chem ; 293(9): 3145-3155, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29326165

ABSTRACT

Low-conductance, highly calcium-selective channels formed by the Orai proteins exist as store-operated CRAC channels and store-independent, arachidonic acid-activated ARC channels. Both are activated by stromal interaction molecule 1 (STIM1), but CRAC channels are activated by STIM1 located in the endoplasmic reticulum membrane, whereas ARC channels are activated by the minor plasma membrane-associated pool of STIM1. Critically, maximally activated CRAC channel and ARC channel currents are completely additive within the same cell, and their selective activation results in their ability to each induce distinct cellular responses. We have previously shown that specific ARC channel activation requires a PKA-mediated phosphorylation of a single threonine residue (Thr389) within the cytoplasmic region of STIM1. Here, examination of the molecular basis of this phosphorylation-dependent activation revealed that phosphorylation of the Thr389 residue induces a significant structural change in the STIM1-Orai-activating region (SOAR) that interacts with the Orai proteins, and it is this change that determines the selective activation of the store-independent ARC channels versus the store-operated CRAC channels. In conclusion, our findings reveal the structural changes underlying the selective activation of STIM1-induced CRAC or ARC channels that determine the specific stimulation of these two functionally distinct Ca2+ entry pathways.


Subject(s)
Calcium Release Activated Calcium Channels/metabolism , Stromal Interaction Molecule 1/chemistry , Stromal Interaction Molecule 1/metabolism , Biological Transport , Calcium/metabolism , HEK293 Cells , Humans , Phosphorylation , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...