Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Gut ; 72(6): 1101-1114, 2023 06.
Article in English | MEDLINE | ID: mdl-36191962

ABSTRACT

OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial condition driven by genetic and environmental risk factors. A genetic variation in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene has been associated with autoimmune disorders while protecting from the IBD subtype Crohn's disease. Mice expressing the murine orthologous PTPN22-R619W variant are protected from intestinal inflammation in the model of acute dextran sodium sulfate (DSS)-induced colitis. We previously identified food-grade titanium dioxide (TiO2, E171) as a neglected IBD risk factor. Here, we investigate the interplay of the PTPN22 variant and TiO2-mediated effects during IBD pathogenesis. DESIGN: Acute DSS colitis was induced in wild-type and PTPN22 variant mice (PTPN22-R619W) and animals were treated with TiO2 nanoparticles during colitis induction. Disease-triggering mechanisms were investigated using bulk and single-cell RNA sequencing. RESULTS: In mice, administration of TiO2 nanoparticles abrogated the protective effect of the variant, rendering PTPN22-R619W mice susceptible to DSS colitis. In early disease, cytotoxic CD8+ T-cells were found to be reduced in the lamina propria of PTPN22-R619W mice, an effect reversed by TiO2 administration. Normalisation of T-cell populations correlated with increased Ifng expression and, at a later stage of disease, the promoted prevalence of proinflammatory macrophages that triggered severe intestinal inflammation. CONCLUSION: Our findings indicate that the consumption of TiO2 nanoparticles might have adverse effects on the gastrointestinal health of individuals carrying the PTPN22 variant. This demonstrates that environmental factors interact with genetic risk variants and can reverse a protective mechanism into a disease-promoting effect.


Subject(s)
Colitis , Crohn Disease , Inflammatory Bowel Diseases , Nanoparticles , Mice , Animals , Crohn Disease/genetics , Crohn Disease/complications , CD8-Positive T-Lymphocytes/metabolism , Colitis/chemically induced , Colitis/genetics , Colitis/prevention & control , Inflammation/complications , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics
2.
Methods Mol Biol ; 2060: 111-130, 2020.
Article in English | MEDLINE | ID: mdl-31617175

ABSTRACT

HSV-1 amplicon vectors have been used as platforms for the generation of genetic vaccines against both DNA and RNA viruses. Mice vaccinated with such vectors encoding structural proteins from both foot-and-mouth disease virus and rotavirus were partially protected from challenge with wild-type virus (D'Antuono et al., Vaccine 28:7363-7372, 2010; Laimbacher et al., Mol Ther 20:1810-1820, 2012; Meier et al., Int J Mol Sci 18:431, 2017), indicating that HSV-1 amplicon vectors are attractive tools for the development of complex and safe genetic vaccines.This chapter describes the preparation and testing of HSV-1 amplicon vectors that encode individual or multiple viral structural proteins from a polycistronic transgene cassette. We further put particular emphasis on generating virus-like particles (VLPs) in vector-infected cells. Expression of viral genes is confirmed by Western blot and immune fluorescence analysis and generation of VLPs in vector-infected cells is demonstrated by electron microscopy. Furthermore, examples on how to analyze the immune response in a mouse model and possible challenge experiments are described.


Subject(s)
Genetic Vectors , Herpesvirus 1, Human , Transduction, Genetic , Viral Vaccines , Animals , Chlorocebus aethiops , Genetic Vectors/genetics , Genetic Vectors/immunology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/immunology , Humans , Mice , Vero Cells , Viral Structural Proteins/genetics , Viral Structural Proteins/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
3.
J Virol Methods ; 256: 24-31, 2018 06.
Article in English | MEDLINE | ID: mdl-29496429

ABSTRACT

Group C Rotavirus (RVC) has been associated globally with sporadic outbreaks of gastroenteritis in children and adults. RVC also infects animals, and interspecies transmission has been reported as well as its zoonotic potential. Considering its genetic diversity and the absence of effective vaccines, it is important and necessary to develop new generation vaccines against RVC for both humans and animals. The aim of the present study was to develop and characterize an HSV-1-based amplicon vector expressing a human RVC-VP6 protein and evaluate the humoral immune response induced after immunizing BALB/c mice. Local fecal samples positive for RVC were used for isolation and sequencing of the vp6 gene, which phylogenetically belongs to the I2 genotype. We show here that cells infected with the HSV[VP6C] amplicon vector efficiently express the VP6 protein, and induced specific anti-RVC antibodies in mice immunized with HSV[VP6C], in a prime-boost schedule. This work highlights that amplicon vectors are an attractive platform for the generation of safe genetic immunogens against RVC, without the addition of external adjuvants.


Subject(s)
Antigens, Viral/genetics , Antigens, Viral/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Gene Expression , Genetic Vectors/genetics , Herpesvirus 1, Human/genetics , Rotavirus/genetics , Rotavirus/immunology , Animals , Antibodies, Viral/immunology , Chlorocebus aethiops , Humans , Immunity, Humoral , Male , Mice , Phylogeny , Recombinant Proteins , Vero Cells
4.
Oncotarget ; 8(27): 44533-44549, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28562350

ABSTRACT

U94, the latency gene of human herpesvirus 6, was found to inhibit migration, invasion and proliferation of vascular endothelial cells (ECs). Because of its potent anti-migratory activity on ECs, we tested the capability of U94 to interfere with the individual steps of the metastatic cascade. We examined the U94 biological activity on the human breast cancer cell line MDA-MB 231, as a model of highly aggressive cancer cell. Here we show that the expression of U94 delivered by an HSV-1-based amplicon promoted down-modulation of Src and downstream molecules linked to cell motility and proliferation. Indeed, U94 expression strongly inhibited cell migration, invasiveness and clonogenicity. We investigated the effects of U94 in a three-dimensional rotary cell-culture system and observed the ability of U94 to modify tumor cell morphology by inducing a partial mesenchymal-to-epithelial transition. In fact, despite U94 did not induce any expression of the epithelial marker E-cadherin, it down-modulated different mesenchymal markers as ß-catenin, Vimentin, TWIST, Snail1, and MMP2. In vivo data on the tumorigenicity of MDA-MB 231 displayed the capability of U94 to control tumor growth, invasiveness and metastasis, as well as tumor-driven angiogenesis. The antitumor U94 activity was also confirmed on the human cervical cancer cell line HeLa. The ability of U94 to inhibit cell growth, invasion and metastasis opens the way to a promising field of research aimed to develop new therapeutic approaches for treating tumor and cancer metastasis.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Genes, src , Herpesvirus 6, Human/physiology , Viral Proteins/genetics , Animals , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic , Disease Models, Animal , Female , Gene Expression , Heterografts , Humans , Mice , Neoplasm Metastasis , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Signal Transduction , Transfection , Tumor Microenvironment/genetics , Viral Proteins/metabolism
5.
J Virol ; 91(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28331098

ABSTRACT

There are currently no approved therapeutics or vaccines to treat or protect against the severe hemorrhagic fever and death caused by Ebola virus (EBOV). Ebola virus-like particles (EBOV VLPs) consisting of the matrix protein VP40, the glycoprotein (GP), and the nucleoprotein (NP) are highly immunogenic and protective in nonhuman primates against Ebola virus disease (EVD). We have constructed a modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) recombinant coexpressing VP40 and GP of EBOV Mayinga and the NP of Taï Forest virus (TAFV) (MVA-BN-EBOV-VLP) to launch noninfectious EBOV VLPs as a second vaccine modality in the MVA-BN-EBOV-VLP-vaccinated organism. Human cells infected with either MVA-BN-EBOV-VLP or MVA-BN-EBOV-GP showed comparable GP expression levels and transport of complex N-glycosylated GP to the cell surface. Human cells infected with MVA-BN-EBOV-VLP produced large amounts of EBOV VLPs that were decorated with GP spikes but excluded the poxviral membrane protein B5, thus resembling authentic EBOV particles. The heterologous TAFV NP enhanced EBOV VP40-driven VLP formation with efficiency similar to that of the homologous EBOV NP in a transient-expression assay, and both NPs were incorporated into EBOV VLPs. EBOV GP-specific CD8 T cell responses were comparable between MVA-BN-EBOV-VLP- and MVA-BN-EBOV-GP-immunized mice. The levels of EBOV GP-specific neutralizing and binding antibodies, as well as GP-specific IgG1/IgG2a ratios induced by the two constructs, in mice were also similar, raising the question whether the quality rather than the quantity of the GP-specific antibody response might be altered by an EBOV VLP-generating MVA recombinant.IMPORTANCE The recent outbreak of Ebola virus (EBOV), claiming more than 11,000 lives, has underscored the need to advance the development of safe and effective filovirus vaccines. Virus-like particles (VLPs), as well as recombinant viral vectors, have proved to be promising vaccine candidates. Modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) is a safe and immunogenic vaccine vector with a large capacity to accommodate multiple foreign genes. In this study, we combined the advantages of VLPs and the MVA platform by generating a recombinant MVA-BN-EBOV-VLP that would produce noninfectious EBOV VLPs in the vaccinated individual. Our results show that human cells infected with MVA-BN-EBOV-VLP indeed formed and released EBOV VLPs, thus producing a highly authentic immunogen. MVA-BN-EBOV-VLP efficiently induced EBOV-specific humoral and cellular immune responses in vaccinated mice. These results are the basis for future advancements, e.g., by including antigens from various filoviral species to develop multivalent VLP-producing MVA-based filovirus vaccines.


Subject(s)
Ebola Vaccines/immunology , Ebolavirus/isolation & purification , Glycoproteins/immunology , Vaccines, Virus-Like Particle/immunology , Vaccinia virus/genetics , Virion/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CD8-Positive T-Lymphocytes/immunology , Ebola Vaccines/genetics , Ebolavirus/genetics , Ebolavirus/immunology , Ebolavirus/physiology , Glycoproteins/genetics , Humans , Immunoglobulin G/blood , Mice , Nucleoproteins/genetics , Nucleoproteins/immunology , Viral Core Proteins/genetics , Viral Core Proteins/immunology , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Virion/physiology
6.
Int J Mol Sci ; 18(2)2017 Feb 16.
Article in English | MEDLINE | ID: mdl-28212334

ABSTRACT

Rotaviruses (RVs) are important enteric pathogens of newborn humans and animals, causing diarrhea and in rare cases death, especially in very young individuals. Rotavirus vaccines presently used are modified live vaccines that lack complete biological safety. Previous work from our laboratory suggested that vaccines based on in situ produced, non-infectious rotavirus-like particles (RVLPs) are efficient while being entirely safe. However, using either vaccine, active mucosal immunization cannot induce protective immunity in newborns due to their immature immune system. We therefore hypothesized that offspring from vaccinated dams are passively immunized either by transfer of maternal antibodies during pregnancy or by taking up antibodies from milk. Using a codon optimized polycistronic gene expression cassette packaged into herpesvirus particles, the simultaneous expression of the RV capsid genes led to the intracellular formation of RVLPs in various cell lines. Vaccinated dams developed a strong RV specific IgG antibody response determined in sera and milk of both mother and pups. Moreover, sera of naïve pups nursed by vaccinated dams also had RV specific antibodies suggesting a lactogenic transfer of antibodies. Although full protection of pups was not achieved in this mouse model, our observations are important for the development of improved vaccines against RV in humans as well as in various animal species.


Subject(s)
Antibodies, Viral/immunology , Genetic Vectors/genetics , Herpesvirus 1, Human/genetics , Milk/immunology , Rotavirus Vaccines/genetics , Rotavirus Vaccines/immunology , Rotavirus/immunology , Vaccination , Animals , Antibodies, Viral/blood , Antibody Specificity , Cell Line, Tumor , Chlorocebus aethiops , Codon , Disease Models, Animal , Female , Humans , Mice , Pregnancy , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Vaccines/administration & dosage , Transduction, Genetic , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Vero Cells , Viral Structural Proteins/genetics , Viral Structural Proteins/immunology
7.
Virology ; 454-455: 67-77, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24725933

ABSTRACT

The herpes simplex virus type 1 (HSV-1) tegument proteins pUL36 (VP1/2) and pUL37 are essential for viral egress. We previously defined a minimal domain in HSV-1 pUL36, residues 548-572, as important for binding pUL37. Here, we investigated the role of this region in binding to pUL37 and facilitating viral replication. We deleted residues 548-572 in frame in a virus containing a mRFP tag at the N-terminus of the capsid protein VP26 and an eGFP tag at the C-terminus of pUL37 (HSV-1pUL36∆548-572). This mutant virus was unable to generate plaques in Vero cells, indicating that deletion of this region of pUL36 blocks viral replication. Imaging of HSV-1pUL36∆548-572-infected Vero cells, in comparison to parental and resucant, revealed a block in secondary envelopment of cytoplasmic capsids. In addition, immunoblot analysis suggested that failure to bind pUL37 affected the stability of pUL36. This study provides further insight into the role of this essential interaction.


Subject(s)
Herpesvirus 1, Human/physiology , Viral Proteins/metabolism , Viral Structural Proteins/metabolism , Virus Release , Animals , Chlorocebus aethiops , DNA Mutational Analysis , Vero Cells , Viral Plaque Assay
8.
Methods Mol Biol ; 1144: 99-115, 2014.
Article in English | MEDLINE | ID: mdl-24671679

ABSTRACT

HSV-1 amplicon vectors have been used as platforms for the generation of genetic vaccines against both DNA and RNA viruses. Mice vaccinated with such vectors encoding structural proteins from both foot-and-mouth disease virus and rotavirus were partially protected from challenge with wild-type virus (D'Antuono et al. Vaccine 28: 7363-7372, 2010; Laimbacher et al. Mol Ther 20: 1810-1820, 2012), indicating that HSV-1 amplicon vectors are attractive tools for the development of complex and safe genetic vaccines. This chapter describes the use of HSV-1 amplicon vectors that encode individual or multiple viral structural proteins from a polycistronic transgene cassette in mammalian cells. More precisely, amplicon vectors that encode multiple structural viral proteins support the in situ production of viruslike particles (VLPs) in vector-infected cells. The expression of the viral genes is confirmed by Western blot and immune fluorescence analysis, and the generation of VLPs in vector-infected cells is demonstrated by electron microscopy.


Subject(s)
Herpesvirus 1, Human/genetics , Molecular Biology/methods , Rotavirus/immunology , Viral Vaccines/genetics , Animals , Chlorocebus aethiops , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Foot-and-Mouth Disease/therapy , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/immunology , Herpesvirus 1, Human/immunology , Humans , Mice , Rotavirus/genetics , Rotavirus/pathogenicity , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/therapy , Vero Cells , Viral Structural Proteins/antagonists & inhibitors , Viral Structural Proteins/immunology , Viral Vaccines/therapeutic use
9.
PLoS One ; 7(10): e47947, 2012.
Article in English | MEDLINE | ID: mdl-23110139

ABSTRACT

Rotavirus viroplasms are cytosolic, electron-dense inclusions corresponding to the viral machinery of replication responsible for viral template transcription, dsRNA genome segments replication and assembly of new viral cores. We have previously observed that, over time, those viroplasms increase in size and decrease in number. Therefore, we hypothesized that this process was dependent on the cellular microtubular network and its associated dynamic components. Here, we present evidence demonstrating that viroplasms are dynamic structures, which, in the course of an ongoing infection, move towards the perinuclear region of the cell, where they fuse among each other, thereby gaining considerably in size and, simultaneously, explaining the decrease in numbers. On the viral side, this process seems to depend on VP2 for movement and on NSP2 for fusion. On the cellular side, both the temporal transition and the maintenance of the viroplasms are dependent on the microtubular network, its stabilization by acetylation, and, surprisingly, on a kinesin motor of the kinesin-5 family, Eg5. Thus, we provide for the first time deeper insights into the dynamics of rotavirus replication, which can explain the behavior of viroplasms in the infected cell.


Subject(s)
Inclusion Bodies/metabolism , Microtubules/metabolism , Rotavirus/physiology , Virus Replication/physiology , Animals , Biological Transport/physiology , Capsid Proteins/metabolism , Cell Line , Chlorocebus aethiops , Fluorescent Antibody Technique , Immunoblotting , Kinesins/metabolism , Macaca mulatta , Microscopy, Electron, Transmission , Plasmids/genetics , RNA-Binding Proteins/metabolism , Rotavirus/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
10.
Curr Protoc Neurosci ; Chapter 4: Unit 4.14, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22752894

ABSTRACT

Herpes simplex virus type 1 (HSV-1)-based amplicon vectors contain only a very small percentage of the 152-kbp viral genome. Consequently, replication and packaging of amplicons depend on helper functions that are provided either by replication-defective mutants of HSV-1 or by replication-competent, but packaging-defective, HSV-1 genomes. Sets of cosmids that overlap and represent the entire HSV-1 genome can form, via homologous recombination, circular replication-competent viral genomes, which give rise to infectious virus progeny. However, if the DNA cleavage/packaging signals are deleted, reconstituted virus genomes are not packageable, but still provide all the helper functions required for the packaging of cotransfected amplicon DNA. The resulting stocks of packaged amplicon vectors are essentially free of contaminating helper virus. This unit describes the cotransfection of amplicon and cosmid or bacterial artificial chromosome (BAC) DNA into 2-2 cells by cationic liposome-mediated transfection and the harvesting of packaged vector particles. Support protocols provide methods for preparing cosmid and BAC DNA and determining the titers of amplicon stocks.


Subject(s)
Gene Transfer Techniques/trends , Genetic Vectors/genetics , Helper Viruses/genetics , Herpesvirus 1, Human/genetics , Animals , Escherichia coli/genetics , Humans , Transfection/methods , Virus Replication/genetics
11.
Mol Ther ; 20(9): 1810-20, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22713696

ABSTRACT

Virus-like particles (VLPs) are promising vaccine candidates because they represent viral antigens in the authentic conformation of the virion and are therefore readily recognized by the immune system. As VLPs do not contain genetic material they are safer than attenuated virus vaccines. In this study, herpes simplex virus type 1 (HSV-1) amplicon vectors were constructed to coexpress the rotavirus (RV) structural genes VP2, VP6, and VP7 and were used as platforms to launch the production of RV-like particles (RVLPs) in vector-infected mammalian cells. Despite the observed splicing of VP6 RNA, full-length VP6 protein and RVLPs were efficiently produced. Intramuscular injection of mice with the amplicon vectors as a two-dose regimen without adjuvants resulted in RV-specific humoral immune responses and, most importantly, immunized mice were partially protected at the mucosal level from challenge with live wild-type (wt) RV. This work provides proof of principle for the application of HSV-1 amplicon vectors that mediate the efficient production of heterologous VLPs as genetic vaccines.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Herpesvirus 1, Human/immunology , Rotavirus Infections/prevention & control , Rotavirus/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Antibodies, Viral/biosynthesis , Antigens, Viral/genetics , Capsid Proteins/genetics , Capsid Proteins/immunology , Chlorocebus aethiops , Female , Genetic Vectors , HEK293 Cells , Herpesvirus 1, Human/genetics , Humans , Immunity, Humoral , Immunity, Mucosal , Immunization , Mice , Rotavirus/genetics , Rotavirus Infections/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vero Cells , Virion/genetics , Virion/immunology
12.
Vaccine ; 28(46): 7363-72, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20851082

ABSTRACT

HSV-1 amplicon vectors encoding heterologous antigens were capable to mediate in situ generation of protein synthesis and to generate a specific immune response to the corresponding antigens. In this study, foot-and-mouth disease (FMD) virus antigens were used to generate a genetic vaccine prototype. The amplicons were designed to provide a high safety profile as they do not express any HSV-1 genes when packaged using a helper virus-free system, and they are able to encapsidate several copies of the transgene or allow the simultaneous expression of different genes. Virus-like particles were produced after cell processing of the delivered DNA. Inoculation of mice with 5 × 10(5) transducing units of amplicon vectors resulted in FMDV-specific humoral responses in the absence of adjuvants, which were dependent on the in situ de novo production of the vector-encoded antigens. Challenge of mice vaccinated with these amplicons with a high dose of live virus, resulted in partial protection, with a significant reduction of viremia. This work highlights the potential use of a HSV-1 amplicon vector platform for generation of safe genetic vaccines.


Subject(s)
Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/prevention & control , Herpesvirus 1, Human/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Antigens, Viral/biosynthesis , Antigens, Viral/immunology , Capsid Proteins/biosynthesis , Capsid Proteins/immunology , Chlorocebus aethiops , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease Virus/genetics , Genetic Vectors , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Transgenes , Vaccines, DNA/biosynthesis , Vero Cells , Viral Vaccines/biosynthesis
13.
J Virol ; 84(8): 3808-24, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20106923

ABSTRACT

Adeno-associated virus (AAV) has previously been shown to inhibit the replication of its helper virus herpes simplex virus type 1 (HSV-1), and the inhibitory activity has been attributed to the expression of the AAV Rep proteins. In the present study, we assessed the Rep activities required for inhibition of HSV-1 replication using a panel of wild-type and mutant Rep proteins lacking defined domains and activities. We found that the inhibition of HSV-1 replication required Rep DNA-binding and ATPase/helicase activities but not endonuclease activity. The Rep activities required for inhibition of HSV-1 replication precisely coincided with the activities that were responsible for induction of cellular DNA damage and apoptosis, suggesting that these three processes are closely linked. Notably, the presence of Rep induced the hyperphosphorylation of a DNA damage marker, replication protein A (RPA), which has been reported not to be normally hyperphosphorylated during HSV-1 infection and to be sequestered away from HSV-1 replication compartments during infection. Finally, we demonstrate that the execution of apoptosis is not required for inhibition of HSV-1 replication and that the hyperphosphorylation of RPA per se is not inhibitory for HSV-1 replication, suggesting that these two processes are not directly responsible for the inhibition of HSV-1 replication by Rep.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA Helicases/metabolism , Dependovirus/physiology , Herpesvirus 1, Human/physiology , Trans-Activators/metabolism , Viral Proteins/metabolism , Virus Replication , Animals , Apoptosis , Chlorocebus aethiops , DNA Damage , DNA, Viral/metabolism , Dependovirus/growth & development , Herpesvirus 1, Human/growth & development , Phosphorylation , Sequence Deletion , Vero Cells
14.
J Virol ; 82(10): 4974-90, 2008 May.
Article in English | MEDLINE | ID: mdl-18337577

ABSTRACT

We have constructed a recombinant herpes simplex virus type 1 (HSV-1) that simultaneously encodes selected structural proteins from all three virion compartments-capsid, tegument, and envelope-fused with autofluorescent proteins. This triple-fluorescent recombinant, rHSV-RYC, was replication competent, albeit with delayed kinetics, incorporated the fusion proteins into all three virion compartments, and was comparable to wild-type HSV-1 at the ultrastructural level. The VP26 capsid fusion protein (monomeric red fluorescent protein [mRFP]-VP26) was first observed throughout the nucleus and later accumulated in viral replication compartments. In the course of infection, mRFP-VP26 formed small foci in the periphery of the replication compartments that expanded and coalesced over time into much larger foci. The envelope glycoprotein H (gH) fusion protein (enhanced yellow fluorescent protein [EYFP]-gH) was first observed accumulating in a vesicular pattern in the cytoplasm and was then incorporated primarily into the nuclear membrane. The VP16 tegument fusion protein (VP16-enhanced cyan fluorescent protein [ECFP]) was first observed in a diffuse nuclear pattern and then accumulated in viral replication compartments. In addition, it also formed small foci in the periphery of the replication compartments which, however, did not colocalize with the small mRFP-VP26 foci. Later, VP16-ECFP was redistributed out of the nucleus into the cytoplasm, where it accumulated in vesicular foci and in perinuclear clusters reminiscent of the Golgi apparatus. Late in infection, mRFP-VP26, EYFP-gH, and VP16-ECFP were found colocalizing in dots at the plasma membrane, possibly representing mature progeny virus. In summary, this study provides new insights into the dynamics of compartmentalization and interaction among capsid, tegument, and envelope proteins. Similar strategies can also be applied to assess other dynamic events in the virus life cycle, such as entry and trafficking.


Subject(s)
Herpesvirus 1, Human/growth & development , Viral Proteins/biosynthesis , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Cell Membrane/chemistry , Cell Nucleus/chemistry , Chlorocebus aethiops , Cricetinae , Cytoplasm/chemistry , Fluorescent Antibody Technique , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Herpesvirus 1, Human/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Nuclear Envelope/chemistry , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Viral Proteins/genetics , Red Fluorescent Protein
15.
J Virol ; 81(9): 4732-43, 2007 May.
Article in English | MEDLINE | ID: mdl-17314170

ABSTRACT

We performed live cell visualization assays to directly assess the interaction between competing adeno-associated virus (AAV) and herpes simplex virus type 1 (HSV-1) DNA replication. Our studies reveal the formation of separate AAV and HSV-1 replication compartments and the inhibition of HSV-1 replication compartment formation in the presence of AAV. AAV Rep is recruited into AAV replication compartments but not into those of HSV-1, while the single-stranded DNA-binding protein HSV-1 ICP8 is recruited into both AAV and HSV-1 replication compartments, although with differential staining patterns. Slot blot analysis of coinfected cells revealed a dose-dependent inhibition of HSV-1 DNA replication by wild-type AAV but not by rep-negative recombinant AAV. Consistent with this, Western blot analysis indicated that wild-type AAV affects the levels of the HSV-1 immediate-early protein ICP4 and the early protein ICP8 only modestly but strongly inhibits the accumulation of the late proteins VP16 and gC. Furthermore, we demonstrate that the presence of Rep in the absence of AAV DNA replication is sufficient for the inhibition of HSV-1. In particular, Rep68/78 proteins severely inhibit the formation of mature HSV-1 replication compartments and lead to the accumulation of ICP8 at sites of cellular DNA synthesis, a phenomenon previously observed in the presence of viral polymerase inhibitors. Taken together, our results suggest that AAV and HSV-1 replicate in separate compartments and that AAV Rep inhibits HSV-1 at the level of DNA replication.


Subject(s)
DNA Replication/physiology , Dependovirus/physiology , Herpesvirus 1, Human/physiology , Virus Replication , Animals , Blotting, Western , Chlorocebus aethiops , DNA Primers , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Microscopy, Fluorescence , Vero Cells , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL