Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(36): 19925-19931, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37642382

ABSTRACT

We report the development and characterization of a library of Ir(III) photocatalysts capable of undergoing spin-forbidden excitation (SFE) under orange light irradiation (595 nm). These catalysts were successfully applied to the construction of synthetically valuable C(sp2)-C(sp3) bonds inaccessible with existing methods of low-energy light-driven dual nickel/photoredox catalysis, demonstrating the synthetic utility of this photocatalyst family. The photocatalysts are capable of accessing both oxidatively and reductively activated coupling partners, illustrated through deaminative arylation and potassium alkyl trifluoroborate cross-coupling reactions with aryl halides. We demonstrate diverse substrate scopes of both cross-coupling paradigms under mild conditions in the first example of low-energy light-driven C(sp2)-C(sp3) metallaphotoredox coupling.

2.
J Am Chem Soc ; 144(49): 22409-22415, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36417474

ABSTRACT

Aryl amination is an essential transformation for medicinal, process, and materials chemistry. In addition to classic Buchwald-Hartwig amination conditions, blue-light-driven metallaphotoredox catalysis has emerged as a valuable tool for C-N cross-coupling. However, blue light suffers from low penetration through reaction media, limiting its scalability for industrial purposes. In addition, blue light enhances unwanted side-product formation in metallaphotoredox catalysis, namely hydrodehalogenation. Low-energy light, such as deep red (DR) or near-infrared (NIR), offers a solution to this problem as it can provide enhanced penetration through reaction media as compared to higher-energy wavelengths. Herein, we show that low-energy light can also enhance the desired reactivity in metallaphotoredox catalysis by suppressing unwanted hydrodehalogenation. We hypothesize that the reduced side product is formed by direct photolysis of the aryl-nickel bond by the high-energy light, leading to the generation of aryl radicals. Using deep-red or near-infrared light and an osmium photocatalyst, we demonstrate an enhanced scope of (hetero)aryl bromides and amine-based nucleophiles with minimal formation of hydrodehalogenation byproducts.


Subject(s)
Light , Nickel , Catalysis , Amination , Nickel/chemistry , Bromides/chemistry
3.
J Am Chem Soc ; 139(33): 11595-11600, 2017 08 23.
Article in English | MEDLINE | ID: mdl-28758751

ABSTRACT

The development of a general catalytic system for the palladium-catalyzed carbocyclization of unactivated alkyl bromides with alkenes is described. This approach uses a commercially available bisphosphine ligand and avoids the use of carbon monoxide atmosphere present in prior studies involving alkyl iodides. Detailed mechanistic studies of the transformation are performed, which are consistent with auto-tandem catalysis involving atom-transfer radical cyclization followed by catalytic dehydrohalogenation. These studies also suggest that reactions involving alkyl iodides may proceed through a metal-initiated, rather than metal-catalyzed, radical chain process.


Subject(s)
Alkenes/chemistry , Bromides/chemistry , Palladium/chemistry , Alkenes/chemical synthesis , Alkylation , Bromides/chemical synthesis , Catalysis , Cyclization , Halogenation , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Iodides/chemical synthesis , Iodides/chemistry , Ligands
4.
Science ; 355(6326): 727-730, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28209894

ABSTRACT

The intermolecular hydroamination of unactivated alkenes with simple dialkyl amines remains an unsolved problem in organic synthesis. We report a catalytic protocol for efficient additions of cyclic and acyclic secondary alkyl amines to a wide range of alkyl olefins with complete anti-Markovnikov regioselectivity. In this process, carbon-nitrogen bond formation proceeds through a key aminium radical cation intermediate that is generated via electron transfer between an excited-state iridium photocatalyst and an amine substrate. These reactions are redox-neutral and completely atom-economical, exhibit broad functional group tolerance, and occur readily at room temperature under visible light irradiation. Certain tertiary amine products generated through this method are formally endergonic relative to their constituent olefin and amine starting materials and thus are not accessible via direct coupling with conventional ground-state catalysts.

5.
Org Lett ; 17(5): 1284-7, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25692664

ABSTRACT

Catalytic multicomponent [m + n + o]-type cycloadditions offer efficient, atom-economical routes to diverse complex carbocycles. Recently, such transformations have emerged as unique strategies for medium ring carbocycle synthesis. Despite the important developments in this area, however, highly enantioselective [m + n + o]-type processes accessing medium ring carbocycles have yet to be developed. Herein, a rhodium-catalyzed [4 + 2 + 2] cycloaddition of allenedienes with allenes enabling the direct stereoselective synthesis of cis-fused cyclooctanoids is reported. These cycloadditions are successful with a diverse range of π-components and demonstrate the potential for high levels of enantioselectivity in a [4 + 2 + 2] process.

SELECTION OF CITATIONS
SEARCH DETAIL
...