Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Results Chem ; 72024 Jan.
Article in English | MEDLINE | ID: mdl-38560090

ABSTRACT

Phospholipase D3 (PLD3) and D4 (PLD4) are endolysosomal exonucleases of ssDNA and ssRNA that regulate innate immunity. Polymorphisms of these enzymes are correlated with numerous human diseases, including Alzheimer's, rheumatoid arthritis, and systemic sclerosis. Pharmacological modulation of these immunoregulatory proteins may yield novel immunotherapies and adjuvants. A previous study reported a high-throughput screen (N = 17,952) that discovered a PLD3-selective activator and inhibitor, as well as a nonselective inhibitor, but failed to identify selective modulators of PLD4. However, modulators selective for PLD4 are therapeutically pertinent, since recent reports have shown that regulating this protein has direct implications in cancer and autoimmune diseases. Furthermore, the high expression of PLD4 in dendritic and myeloid cells, in comparison to the broader expression of PLD3, presents the opportunity for a cell-targeted immunotherapy. Here, we describe screening of an expended diversity library (N = 45,760) with an improved platform and report the discovery of one inhibitor and three activators selective for PLD4. Furthermore, kinetic modeling and structural analysis suggest mechanistic differences in the modulation of these hits. These findings further establish the utility of this screening platform and provide a set of chemical scaffolds to guide future small-molecule development for this novel immunoregulator target.

3.
Cell Rep ; 42(12): 113470, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37979166

ABSTRACT

Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells. The phosphorylation of vimentin is critical to its structure and function. Here, we identify that stabilizing vimentin phosphorylation at serine 56 induces multinucleation, specifically in hybrid E/M cells with stemness properties but not epithelial or mesenchymal cells. Cancer stem-like cells are especially susceptible to vimentin-induced multinucleation relative to differentiated cells, leading to a reduction in self-renewal and stemness. As a result, vimentin-induced multinucleation leads to sustained inhibition of stemness properties, tumor initiation, and metastasis. These observations indicate that a single, targetable phosphorylation event in vimentin is critical for stemness and metastasis in carcinomas with hybrid E/M properties.


Subject(s)
Carcinoma , Intermediate Filaments , Humans , Vimentin/metabolism , Phosphorylation , Intermediate Filaments/metabolism , Intermediate Filaments/pathology , Carcinoma/pathology , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Neoplasm Metastasis/pathology
4.
Cell Rep Methods ; 3(10): 100599, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37797618

ABSTRACT

For large libraries of small molecules, exhaustive combinatorial chemical screens become infeasible to perform when considering a range of disease models, assay conditions, and dose ranges. Deep learning models have achieved state-of-the-art results in silico for the prediction of synergy scores. However, databases of drug combinations are biased toward synergistic agents and results do not generalize out of distribution. During 5 rounds of experimentation, we employ sequential model optimization with a deep learning model to select drug combinations increasingly enriched for synergism and active against a cancer cell line-evaluating only ∼5% of the total search space. Moreover, we find that learned drug embeddings (using structural information) begin to reflect biological mechanisms. In silico benchmarking suggests search queries are ∼5-10× enriched for highly synergistic drug combinations by using sequential rounds of evaluation when compared with random selection or ∼3× when using a pretrained model.


Subject(s)
Computational Biology , Neoplasms , Humans , Drug Synergism , Computational Biology/methods , Drug Combinations , Neoplasms/drug therapy
6.
Nature ; 622(7983): 507-513, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37730997

ABSTRACT

Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.


Subject(s)
Antineoplastic Agents , Chemistry Techniques, Synthetic , Imines , Spiro Compounds , Humans , Apoptosis/drug effects , Cell Line, Tumor , Imines/chemical synthesis , Imines/chemistry , Imines/pharmacology , Neoplasms/drug therapy , Proteomics , Ribosomes/metabolism , RNA-Binding Proteins/metabolism , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Structure-Activity Relationship , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
7.
Cell Chem Biol ; 30(9): 1115-1134.e10, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37467751

ABSTRACT

The immune checkpoint protein PD-L1 plays critical roles in both immune system homeostasis and tumor progression. Impaired PD-1/PD-L1 function promotes autoimmunity and PD-L1 expression within tumors promotes immune evasion. If and how changes in metabolism or defined metabolites regulate PD-L1 expression is not fully understood. Here, using a metabolomics activity screening-based approach, we have determined that hydroxyproline (Hyp) significantly and directly enhances adaptive (i.e., IFN-γ-induced) PD-L1 expression in multiple relevant myeloid and cancer cell types. Mechanistic studies reveal that Hyp acts as an inhibitor of autophagic flux, which allows it to regulate this negative feedback mechanism, thereby contributing to its overall effect on PD-L1 expression. Due to its prevalence in fibrotic tumors, these findings suggest that hydroxyproline could contribute to the establishment of an immunosuppressive tumor microenvironment and that Hyp metabolism could be targeted to pharmacologically control PD-L1 expression for the treatment of cancer or autoimmune diseases.


Subject(s)
B7-H1 Antigen , Interferon-gamma , Autophagy , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line, Tumor , Hydroxyproline , Interferon-gamma/pharmacology , Interferon-gamma/metabolism , Humans
8.
Nat Chem Biol ; 19(10): 1205-1214, 2023 10.
Article in English | MEDLINE | ID: mdl-37248411

ABSTRACT

The microbiota generates diverse metabolites to modulate host physiology and disease, but their protein targets and mechanisms of action have not been fully elucidated. To address this challenge, we explored microbiota-derived indole metabolites and developed photoaffinity chemical reporters for proteomic studies. We identified many potential indole metabolite-interacting proteins, including metabolic enzymes, transporters, immune sensors and G protein-coupled receptors. Notably, we discovered that aromatic monoamines can bind the orphan receptor GPRC5A and stimulate ß-arrestin recruitment. Metabolomic and functional profiling also revealed specific amino acid decarboxylase-expressing microbiota species that produce aromatic monoamine agonists for GPRC5A-ß-arrestin recruitment. Our analysis of synthetic aromatic monoamine derivatives identified 7-fluorotryptamine as a more potent agonist of GPRC5A. These results highlight the utility of chemoproteomics to identify microbiota metabolite-interacting proteins and the development of small-molecule agonists for orphan receptors.


Subject(s)
Microbiota , Proteomics , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism , Indoles
9.
Bioorg Med Chem Lett ; 89: 129306, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37116763

ABSTRACT

Activating NRF2-driven transcription with non-electrophilic small molecules represents an attractive strategy to therapeutically target disease states associated with oxidative stress and inflammation. In this study, we describe a campaign to optimize the potency and efficacy of a previously identified bis-sulfone based non-electrophilic ARE activator 2. This work identifies the efficacious analog 17, a compound with a non-cytotoxic profile in IMR32 cells, as well as ARE activators 18 and 22, analogs with improved cellular potency. In silico drug-likeness prediction suggested the optimized bis-sulfones 17, 18, and 22 will likely be of pharmacological utility.


Subject(s)
Antioxidant Response Elements , Antioxidants , Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress
10.
J Am Chem Soc ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37017374

ABSTRACT

Glioblastoma (GBM) is the most prevalent and aggressive primary central nervous system (CNS) malignancy. YM155 is a highly potent broad-spectrum anti-cancer drug that was derived from a phenotypic screen for functional inhibitors of survivin expression, but for which the relevant biomolecular target remains unknown. Presumably as a result of its lack of cell-type selectivity, YM155 has suffered from tolerability issues in the clinic. Based on its structural similarity to the GBM-selective prodrug RIPGBM, here, we report the design, synthesis, and characterization of a prodrug form of YM155, termed aYM155. aYM155 displays potent cell killing activity against a broad panel of patient-derived GBM cancer stem-like cells (IC50 = 0.7-10 nM), as well as EGFR-amplified and EGFR variant III-expressing (EGFRvIII) cell lines (IC50 = 3.8-36 nM), and becomes activated in a cell-type-dependent manner. Mass spectrometry-based analysis indicates that enhanced cell-type selectivity results from relative rates of prodrug activation in transformed versus non-transformed cell types. The prodrug strategy also facilitates transport into the brain (brain-to-plasma ratio, aYM155 = 0.56; YM155 = BLQ). In addition, we determine that the survivin-suppressing and apoptosis-inducing activities of YM155 involve its interaction with receptor-interacting protein kinase 2 (RIPK2). In an orthotopic intracranial GBM xenograft model, aYM155 prodrug significantly inhibits brain tumor growth in vivo, which correlates with cell-type selective survivin-based pharmacodynamic effects.

11.
Curr Opin Chem Biol ; 72: 102251, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36571959
12.
Trends Cell Biol ; 33(3): 189-203, 2023 03.
Article in English | MEDLINE | ID: mdl-35931610

ABSTRACT

Pharmacology-based methods that promote antitumor immunity have the potential to be highly efficacious while avoiding the systemic cytotoxicity associated with traditional chemotherapies. Activation of type I interferon (IFN) signaling in antigen-presenting cell types [e.g., macrophages and dendritic cells (DCs)] is critical, if not essential, for inducing a tumor-specific adaptive immune response, including the activation of cytolytic CD8 T cells. In the context of promoting antitumor immunity, the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) pathway has emerged as a principal regulator of essential type I IFN signaling. As such, STING represents a highly attractive target for developing a first-in-class immunotherapy, albeit one with a potential for significant cell type- and downstream pathway-dependent on-target toxicities, as well as conceivable pharmacogenomic liabilities.


Subject(s)
Interferon Type I , Neoplasms , Humans , Signal Transduction , Macrophages/metabolism , Neoplasms/metabolism , Adaptive Immunity , Immunity, Innate
13.
Eur J Med Chem ; 242: 114638, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36001933

ABSTRACT

Epithelial-mesenchymal transition (EMT) endows stem cell-like properties to cancer cells. Targeting this process represents a potential therapeutic approach to overcome cancer metastasis and chemotherapy resistance. FiVe1 was identified from an EMT-based synthetic lethality screen and was found to inhibit the stem cell-like properties and proliferation of not only cancer cells undergoing EMT, but also more broadly in mesenchymal cancers that include therapeutically intractable soft tissue sarcomas. FiVe1 functions by directly binding to the type III intermediate filament protein vimentin (VIM) in a mode that induces hyperphosphorylation of Ser56, which results in selective disruption of mitosis and induced multinucleation in transformed VIM-expressing mesenchymal cancer cell types. Cell-based potency (IC50 = 1.6 µM, HT-1080 fibrosarcoma), poor solubility (<1 µM) and low oral bioavailability limits the direct application of FiVe1 as an in vivo probe or therapeutic agent. To overcome these drawbacks, we performed structure-activity relationship (SAR) studies and synthesized a set of 35 new compounds, consisting of diverse modifications of the FiVe1 scaffold. Among these compounds, 4e showed a marked improvement in potency (IC50 = 44 nM, 35-fold improvement, HT-1080) and cell type selectivity (19-fold improvement), when compared to FiVe1. Improvements in the potency of 4e, in terms of overall cytotoxicity, directly correlate with VIM Ser56 phosphorylation status and the oral bioavailability and pharmacokinetic profiles of 4e in mouse are superior to FiVe1. Successful optimization also resulted in potent and selective derivatives 11a, 11j and 11k, which exhibited superior pharmacological profiles, in terms of metabolic stability and aqueous solubility. Collectively, these optimization efforts have resulted in the development of promising FiVe1 analogs with potential applications in the treatment of mesenchymal cancers, as well as in the study of VIM-related biology.


Subject(s)
Epithelial-Mesenchymal Transition , Sarcoma , Animals , Cell Line, Tumor , Mice , Mitosis , Phosphorylation , Vimentin/genetics
14.
Curr Opin Chem Biol ; 70: 102201, 2022 10.
Article in English | MEDLINE | ID: mdl-36037558

ABSTRACT

Therapeutics that modulate regenerative mechanisms by targeting the activity of endogenous (adult) stem cell populations have the potential to revolutionize medicine. In many human disease states, capacity to repair damaged tissue underlies progressive decline and disease progression. Recent insights derived from efforts aimed at promoting remyelination for the treatment of multiple sclerosis (MS) highlight the importance of considering the limiting factors and underlying mechanisms associated with all aspects of disease onset, progression and recovery, during both the discovery and clinical stages of developing a regenerative medicine. This perspective presents general considerations for the development of regenerative therapies, using remyelination as a case study.


Subject(s)
Multiple Sclerosis , Remyelination , Humans , Multiple Sclerosis/drug therapy , Oligodendroglia , Regenerative Medicine
15.
Chemistry ; 27(56): 13991-13997, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34382264

ABSTRACT

The series of unnatural base pairs (UBPs) developed by the Romesberg lab, which pair via hydrophobic and packing interactions have been replicated, transcribed, and translated inside of a living organism. However, as to why these UBPs exhibit variable fidelity and efficiency when used in different contexts is not clear. In an effort to gain some insights, we investigated the thermal stability and pairing selectivity of the (d)NaM-(d)TPT3 UBP in 11nt duplexes via UV spectroscopy and the effects on helical structure via CD spectroscopy. We observed that while the duplexes containing a UBP are less stable than fully natural duplexes, they are generally more stable than duplexes containing natural mispairs. This work provides the first insights connecting the thermal stability of the (d)NaM-(d)TPT3 UBP to the molecular mechanisms for varying replication fidelity in different sequence contexts in DNA, asymmetrical transcription fidelity, and codon:anticodon interactions and can assist in future UBP development.


Subject(s)
Base Pairing
16.
Bioorg Med Chem Lett ; 49: 128293, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34332037

ABSTRACT

PLD3 and PLD4 have recently been revealed to be endosomal exonucleases that regulate the innate immune response by digesting the ligands of nucleic acid sensors. These enzymes can suppress RNA and DNA innate immune sensors like toll-like receptor 9, and PLD4-deficent mice exhibit inflammatory disease. Targeting these immunoregulatory enzymes presents an opportunity to indirectly regulate innate immune nucleic acid sensors that could yield immunotherapies, adjuvants, and nucleic acid drug stabilizers. To aid in delineating the therapeutic potential of these targets, we have developed a high-throughput fluorescence enzymatic assay to identify modulators of PLD3 and PLD4. Screening of a diversity library (N = 17952) yielded preferential inhibitors of PLD3 and PLD4 in addition to a PLD3 selective activator. The modulation models of these compounds were delineated by kinetic analysis. This work presents an inexpensive and simple method to identify modulators of these immunoregulatory exonucleases.


Subject(s)
Enzyme Activators/chemistry , Enzyme Inhibitors/chemistry , Exodeoxyribonucleases/antagonists & inhibitors , Phospholipase D/antagonists & inhibitors , Enzyme Assays , Fluorescent Dyes/chemistry , High-Throughput Screening Assays , Humans , Nitrophenols/chemistry , Thymine Nucleotides/chemistry , Umbelliferones/chemistry
17.
Bioorg Med Chem ; 42: 116246, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34130216

ABSTRACT

We report the discovery of a fluorescent small molecule probe. This probe exhibits an emission increase in the presence of the oncoprotein MYC that can be attenuated by a competing inhibitor. Hydrogen-deuterium exchange mass spectrometry analysis, rationalized by induced-fit docking, suggests it binds to the "coiled-coil" region of the leucine zipper domain. Point mutations of this site produced functional MYC constructs resistant to inhibition in an oncogenic transformation assay by compounds that displace the probe. Utilizing this probe, we have developed a high-throughput assay to identify MYC inhibitor scaffolds. Screening of a diversity library (N = 1408, 384-well) and a library of pharmacologically active compounds (N = 1280, 1536-well) yielded molecules with greater drug-like properties than the probe. One lead is a potent inhibitor of oncogenic transformation and is specific for MYC relative to resistant mutants and transformation-inducing oncogenes. This method is simple, inexpensive, and does not require protein modification, DNA binding, or the dimer partner MAX. This assay presents an opportunity for MYC inhibition researchers to discover unique scaffolds.


Subject(s)
Drug Development , Fluorescent Dyes/pharmacology , High-Throughput Screening Assays , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Binding Sites/drug effects , Dose-Response Relationship, Drug , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Humans , Molecular Structure , Proto-Oncogene Proteins c-myc/metabolism , Structure-Activity Relationship
18.
STAR Protoc ; 2(2): 100400, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33778785

ABSTRACT

Flow cytometry is a valuable method for analyzing protein expressions at the single cell level but can be difficult to apply to large numbers of samples. This protocol provides instructions to perform a high-throughput small molecule screen using flow cytometry analysis of THP-1 cells, a human monocytic leukemia cell line. We describe a methodology for identifying compounds that regulate PD-L1 surface expression in IFN-γ-stimulated cells, which has been successfully used to screen a collection of ∼200,000 compounds. For complete details on the use and execution of this protocol, please refer to Zavareh et al. (2020).


Subject(s)
Drug Evaluation, Preclinical/methods , Flow Cytometry/methods , High-Throughput Screening Assays/methods , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Humans , Membrane Proteins/analysis , Membrane Proteins/metabolism , THP-1 Cells
19.
Bioorg Chem ; 108: 104614, 2021 03.
Article in English | MEDLINE | ID: mdl-33508678

ABSTRACT

The transcription factor NRF2 controls resistance to oxidative insult and is thus a key therapeutic target for treating a number of disease states associated with oxidative stress and aging. We previously reported CBR-470-1, a bis-sulfone which activates NRF2 by increasing the levels of methylglyoxal, a metabolite that covalently modifies NRF2 repressor KEAP1. Here, we report the design, synthesis, and structure activity relationship of a series of bis-sulfones derived from this unexplored chemical template. We identify analogs with sub-micromolar potencies, 7f and 7g, as well as establish that efficacious NRF2 activation can be achieved by non-toxic analogs 7c, 7e, and 9, a key limitation with CBR-470-1. Further efforts to identify non-covalent NRF2 activators of this kind will likely provide new insight into revealing the role of central metabolism in cellular signaling.


Subject(s)
Antioxidants/pharmacology , Drug Discovery , Thiophenes/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry
20.
Cell Chem Biol ; 28(2): 158-168.e5, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33113406

ABSTRACT

Cancer immunotherapies, including immune checkpoint blockade, have the potential to significantly impact treatments for diverse tumor types. At present, response failures and immune-related adverse events remain significant issues, which could be addressed using optimized combination therapies. Through a cell-based chemical screen of ∼200,000 compounds, we identified that HSP90 inhibitors robustly decrease PD-L1 surface expression, through a mechanism that appears to involve the regulation of master transcriptional regulators (i.e., STAT-3 and c-Myc). Interestingly, HSP90 inhibitors were found to also modulate the surface expression of additional checkpoint proteins (i.e., PD-L2). In the MC-38 syngeneic mouse tumor model, HSP90 inhibition was found to dramatically reduce PD-L1 surface expression on isolated live tumor cells and, consistent with recent findings, was found to increase the number of activated CD8+ T cells within the tumor microenvironment. These findings provide further rationale to explore HSP90 inhibitors as part of combination immunotherapies for the treatment of cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Immune Checkpoint Proteins/genetics , Neoplasms/therapy , Animals , Antineoplastic Agents/therapeutic use , Cell Line , Cell Line, Tumor , Humans , Immunotherapy , Mice , Mice, Inbred C57BL , Neoplasms/drug therapy , Neoplasms/genetics , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...