Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Food Res Int ; 186: 114328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729714

ABSTRACT

The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal ß-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.


Subject(s)
Citrus sinensis , Feces , Flavanones , Fruit and Vegetable Juices , Gastrointestinal Microbiome , Humans , Flavanones/urine , Male , Adult , Female , Feces/microbiology , Feces/chemistry , Hesperidin/urine , Tandem Mass Spectrometry , Middle Aged , Young Adult , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Hydroxybenzoates/urine
2.
Food Funct ; 15(2): 1031-1049, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38193367

ABSTRACT

Orange juice is an important food source of bioactive compounds, mainly the flavanones hesperidin and narirutin. This study aimed to investigate the underlying molecular mechanisms of action of orange juice's health properties by analyzing changes in the plasma proteome of healthy Brazilian volunteers after consuming juices made from 'Bahia' (BOJ-source of flavanones) and 'Cara Cara' (CCOJ-source of flavanones and carotenoids) oranges cultivated in Brazil. We used an untargeted proteomic approach, with a particular emphasis on the juices' effects on blood coagulant activity. We identified 247 differentially expressed proteins, of which 170 significantly increased or decreased after BOJ consumption and 145 after CCOJ. These proteins are involved in 105 processes that can significantly regulate cell adhesion, cell signaling, cell metabolism, inflammation, or others. Bioinformatic analysis evidenced proteins with major cellular regulatory capacity (e.g., FN1 and GAPDH) and predicted transcription factors (TFs) (e.g., SP1 and CEBPA) and miRNAs (e.g., miR-1-3p and miR-615-3p) that could be involved in the regulation of differentially expressed proteins. In-silico docking analyses between flavanone metabolites and TFs evidenced the higher binding capacity of narirutin phase II metabolites with akt1 and p38, interactions that suggest how the expression of genes of differentially expressed proteins were activated or inhibited. Moreover, the study shed light on proteins of coagulation cascade that presented expression modulated by both juices, proposing the modulation of blood coagulant activity as a potential benefit of OJ (mainly CCOJ) consumption. Taken together, this study revealed that BOJ and CCOJ consumption affected plasma proteome in healthy individuals, suggesting potential molecular targets and mechanisms of OJ bioactive compounds in humans.


Subject(s)
Citrus sinensis , Coagulants , Flavanones , MicroRNAs , Humans , Citrus sinensis/chemistry , Brazil , Proteome/analysis , Proteomics , Flavanones/metabolism , Fruit and Vegetable Juices , Fruit/chemistry , MicroRNAs/metabolism , Coagulants/analysis , Coagulants/metabolism
3.
Front Microbiol ; 14: 1199383, 2023.
Article in English | MEDLINE | ID: mdl-37469434

ABSTRACT

Blood orange juice is an important source of flavanones and anthocyanins, mainly hesperidin, narirutin, and cyanidin-3-O-glucoside. The benefits of these bioactive compounds have been reported, but the mechanistic details behind their biological effects are not well established. This study investigated the effects of Moro orange (Citrus sinensis L. Osbeck) juice (MOJ) on gut microbiota composition and cardiometabolic biomarkers in overweight women. In this study, 12 overweight women (BMI from 25.0 to 29.9 kg/m2), aged 18-37 years, consumed 500 mL of MOJ every day for 4 weeks. We assessed the gut microbiota composition, levels of short-chain fatty acids (SCFAs), cardiometabolic biomarkers, and insulin resistance (HOMA-IR) at baseline and after 2 weeks and 4 weeks of MOJ intake. The results suggested that MOJ intake affected the abundance of specific operational taxonomic units (OTUs) of the gut microbiota but did not significantly alter the diversity and general composition of the gut microbiota. However, MOJ intake increased the production of SCFAs, especially propionic and isobutyric acids, and significantly improved cardiometabolic biomarkers such as blood pressure and plasma VCAM-1 levels in the overweight women. Additionally, we observed significant associations between gut microbiota OTUs belonging to the Bacteroidetes phyla and Prevotella 9 genera and the cardiometabolic biomarkers. Furthermore, MOJ reduced fasting glucose and insulin levels and HOMA-IR values, thereby enhancing insulin sensitivity in the insulin-resistant overweight women. Finally, we highlighted the importance of orange juice intake duration because some beneficial changes such as blood pressure improvements were evident at the 2-week time interval of the intervention, but other changes became significant only at the 4-week interval of MOJ intake. In conclusion, our study demonstrated that changes in specific OTUs of the gut microbiota in response to MOJ intake were associated with significant improvements in some cardiometabolic biomarkers and SCFA levels in overweight women with insulin resistance.

4.
Mol Nutr Food Res ; 67(13): e2200847, 2023 07.
Article in English | MEDLINE | ID: mdl-37128695

ABSTRACT

SCOPE: Chronic orange juice intake is associated with reduced risk of cardiovascular disease, however, a large inter-individual variability in response to orange juice for lipid profile and blood pressure has been observed. This heterogeneity in responsiveness could be associated with single nucleotide polymorphism (SNP), which has not been previously addressed. This study aims to investigate the influence of SNP in apolipoprotein E (APOE), apolipoprotein A1 (APOA1), mevalonate (MVK), and lipase lipoprotein (LPL) genes in the biological response after chronic orange juice intake. METHODS AND RESULTS: Forty-six volunteers ingested 500 mL daily for 60 days and blood pressure and biochemical parameters are measured. Also, SNPs in APOE, APOA1, MVK, and LPL genes are genotyped in the volunteers that are medium/high excretors of flavanone metabolites. Genotypes CC (APOA1), AA, and GG (LPL) are associated with positive health effects of orange juice and the CC (APOE), GG (APOA1), GG, and AA (LPL) genotypes are associated with no effects of orange juice consumption (p < 0.05). CONCLUSION: These results identify for the first-time SNP associated with effects of orange juice on lipid levels and blood pressure, results that may provide bases for future precise nutritional recommendations regarding this flavanone-rich food to lower the risk for cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Citrus sinensis , Flavanones , Humans , Apolipoprotein A-I/genetics , Citrus sinensis/genetics , Pilot Projects , Blood Pressure , Lipase , Polymorphism, Single Nucleotide , Apolipoproteins E/genetics
5.
Biochim Biophys Acta Proteins Proteom ; 1871(3): 140898, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36731758

ABSTRACT

Hesperidin and narirutin are the major citrus flavanones. Several studies have associated these compounds with pancreatic ß-cell survival through their capacity to reduce oxidative stress, inflammation, and inhibit apoptosis. However, the molecular mechanisms of action of flavanones in pancreatic ß-cells under high-glycemic stress is still largely unknown. Therefore, this study aimed to decipher molecular mechanisms of flavanone metabolites in pancreatic ß-cells treated with high glucose concentration using untargeted shotgun proteomics. We identified 569 proteins differentially expressed in cells exposed to hesperetin 7-glucuronide (H7G) and 265 in cells exposed to 3-(4'-hydroxyphenyl) propanoic acid (PA). Comparison of global proteomic profiles suggest that these metabolites could counteract changes in protein expression induced by high glucose stress. The bioinformatic analyses suggested that H7G and PA modulated the expression of proteins involved in cell adhesion, cell signaling, metabolism, inflammation, and protein processing in endoplasmic reticulum (ER) pathways. Taken together, this study suggests that H7G and PA can modulate the expression of proteins that may prevent dysfunction of pancreatic ß-cells under stress induced by high glucose.


Subject(s)
Citrus , Flavanones , Citrus/metabolism , Proteomics , Flavanones/pharmacology , Flavanones/metabolism , Inflammation , Glucuronides/pharmacology , Oxidative Stress , Glucose/pharmacology , Glucose/metabolism
6.
J Nutr Biochem ; 112: 109240, 2023 02.
Article in English | MEDLINE | ID: mdl-36442716

ABSTRACT

Blood orange consumption presents potential health benefits and may modulate epigenetic mechanisms such as microRNAs (miRNAs) expression. MiRNAs are non-coding RNAs responsible for post-transcriptional gene regulation, and these molecules can also be used as biomarkers in body fluids. This study was designed to investigate the effect of chronic blood orange juice (BOJ) intake on the inflammatory response and miRNA expression profile in plasma and blood cells in overweight women. The study cohort was comprised of twenty women aged 18-40 years old, diagnosed as overweight, who consumed 500 mL/d of BOJ for four weeks. Clinical data were collected at baseline and after 4 weeks of juice consumption, e.g., anthropometric and hemodynamic parameters, food intake, blood cell count, and metabolic and inflammatory biomarkers. BOJ samples were analyzed and characterized. Additionally, plasma and blood cells were also collected for miRNA expression profiling and evaluation of the expression of genes and proteins in the MAPK and NFκB signaling pathways. BOJ intake increased the expression of miR-144-3p in plasma and the expression of miR-424-5p, miR-144-3p, and miR-130b-3p in peripheral blood mononuclear cells (PBMC). Conversely, the beverage intake decreased the expression of let-7f-5p and miR-126-3p in PBMC. Computational analyses identified different targets of the dysregulated miRNA on inflammatory pathways. Furthermore, BOJ intake increased vitamin C consumption and the pJNK/JNK ratio and decreased the expression of IL6 mRNA and NFκB protein. These results demonstrate that BOJ regulates the expression of genes involved in the inflammatory process and decreases NFкB-protein expression in PBMC.


Subject(s)
Citrus sinensis , Fruit and Vegetable Juices , Insulin Resistance , MicroRNAs , Overweight , Adolescent , Adult , Female , Humans , Young Adult , Biomarkers , Gene Expression Profiling , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Overweight/genetics , Overweight/metabolism , Signal Transduction , MAP Kinase Signaling System , Insulin Resistance/genetics , Insulin Resistance/physiology , NF-kappa B
7.
Food Funct ; 13(24): 12983-13001, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36448600

ABSTRACT

Citrus flavanones may improve oxidative stress and insulin resistance induced by western diets. However, there is a paucity of studies investigating the change in protein expression levels. This study evaluated the protection and the mechanisms of action of citrus flavanone metabolites, hesperetin 7-glucuronide (H7G) and 3-(4'-hydroxyphenyl) propanoic acid (PA), on pancreatic ß-cell function under oxidative stress induced by cholesterol using the global proteomics approach. Cholesterol induced changes in the global proteomic profile in the pancreatic ß-cell line Min6. On the other hand, proteomics analysis identified 254 proteins differentially expressed with H7G and 352 with PA treatments, most of them were opposite to the changes induced by cholesterol. Bioinformatics analysis showed that these proteins are implicated in cell functions like cell signaling (insulin signaling, p30MAPK signaling, and others), metabolism (glucokinase and glutathione metabolisms), and inflammation pathways (TNF-α and NF-κB pathways). Also, the results of molecular docking suggest that H7G and PA could bind to putative transcription factors (PPAR-γ, STAT-3, CREB1, NF-κB, NFYA) and cell signaling proteins (IKK, RAS, Pi3K, ERK), which results in changes in protein expression observed. Altogether, these data suggest that the treatment with H7G and PA protects pancreatic ß-cells against stress induced by cholesterol through multi-proteomic mechanisms of action.


Subject(s)
Citrus , NF-kappa B , NF-kappa B/metabolism , Citrus/metabolism , Proteomics , Molecular Docking Simulation , Cholesterol , Glucuronides
8.
Clin Nutr ESPEN ; 51: 336-344, 2022 10.
Article in English | MEDLINE | ID: mdl-36184225

ABSTRACT

BACKGROUND & AIMS: Dyslipidaemia is usually common in obesity, insulin resistance, and type 2 diabetes mellitus. Clinical trials suggest that orange juice may have a positive impact on lipid metabolism and blood lipid profiles; however conflicting results have been reported. Here, we applied a combined untargeted/targeted lipidomic analysis of plasma to examine the impact of orange (Citrus sinensis) juice intake on the lipidome profile of obese and insulin-resistant subjects. METHODS: Twenty-five participants, both sexes, aged 40-60 years, with obesity and insulin resistance (homeostasis model assessment of insulin resistance (HOMA-IR) index >2.71) ingested 400 mL of orange juice 'Pera' (C. sinensis) for 15 d. Cardiometabolic biomarkers, anthropometric parameters, blood pressure, and plasma lipidomic analysis results were assessed at the beginning and end of the intervention. RESULTS: After the 15-d intervention, a significant decrease was observed in the diastolic blood pressure and blood lipid profile. Among plasma lipidomes, 316 lipid molecules were identified, with the triglycerides (TGs) subclass being the most abundant (n = 106). Plasma lipidome profiling revealed a major signature of the intervention; with concentrations of 37 TG species decreasing after intervention. Qualitatively, oleic and linoleic acids were among the most prevalent fatty acids linked to the altered TG species, representing 50% of TG chains. Modulated TG species were positively correlated with total TG and very low-density lipoprotein levels, as well as systolic and diastolic blood pressure. A strong inter-individual trend was observed, wherein, compared with less responsive subjects, the high responsive subjects displayed the highest decrease in the concentrations of altered TG species, as as well as systolic blood pressure (decrease of 10.3 ± 6.8 mmHg) and body weight (decrease of 0.67 ± 0.71 kg). CONCLUSIONS: These findings suggest that orange juice has a positive impact on lipid metabolism, mainly regarding the composition of TG-specific fatty acid chains and cholesterol esters, protecting against insulin resistance. Furthermore, lipidomics may help clarify alterations at the molecular level after an intervention, contributing to improve the evaluation of the link between dyslipidaemia, insulin resistance, and nutrition.


Subject(s)
Citrus sinensis , Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Biomarkers , Cholesterol Esters , Citrus sinensis/metabolism , Fatty Acids , Insulin , Insulin Resistance/physiology , Linoleic Acids , Lipoproteins, LDL , Obesity , Triglycerides
9.
Clin Nutr ESPEN ; (51): 336-344, Oct. 2022.
Article in English | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1400456

ABSTRACT

BACKGROUND & AIMS: Dyslipidaemia is usually common in obesity, insulin resistance, and type 2 diabetes mellitus. Clinical trials suggest that orange juice may have a positive impact on lipid metabolism and blood lipid profiles; however conflicting results have been reported. Here, we applied a combined untargeted/targeted lipidomic analysis of plasma to examine the impact of orange (Citrus sinensis) juice intake on the lipidome profile of obese and insulin-resistant subjects. METHODS: Twenty-five participants, both sexes, aged 40-60 years, with obesity and insulin resistance (homeostasis model assessment of insulin resistance (HOMA-IR) index >2.71) ingested 400 mL of orange juice 'Pera' (C. sinensis) for 15 d. Cardiometabolic biomarkers, anthropometric parameters, blood pressure, and plasma lipidomic analysis results were assessed at the beginning and end of the intervention. RESULTS: After the 15-d intervention, a significant decrease was observed in the diastolic blood pressure and blood lipid profile. Among plasma lipidomes, 316 lipid molecules were identified, with the triglycerides (TGs) subclass being the most abundant (n = 106). Plasma lipidome profiling revealed a major signature of the intervention; with concentrations of 37 TG species decreasing after intervention. Qualitatively, oleic and linoleic acids were among the most prevalent fatty acids linked to the altered TG species, representing 50% of TG chains. Modulated TG species were positively correlated with total TG and very low-density lipoprotein levels, as well as systolic and diastolic blood pressure. A strong inter-individual trend was observed, wherein, compared with less responsive subjects, the high responsive subjects displayed the highest decrease in the concentrations of altered TG species, as as well as systolic blood pressure (decrease of 10.3 ± 6.8 mmHg) and body weight (decrease of 0.67 ± 0.71 kg). CONCLUSIONS: These findings suggest that orange juice has a positive impact on lipid metabolism, mainly regarding the composition of TG-specific fatty acid chains and cholesterol esters, protecting against insulin resistance. Furthermore, lipidomics may help clarify alterations at the molecular level after an intervention, contributing to improve the evaluation of the link between dyslipidaemia, insulin resistance, and nutrition.


Subject(s)
Animals , Insulin Resistance/physiology , Biomarkers , Citrus sinensis/metabolism , Diabetes Mellitus , Triglycerides , Linoleic Acids , Cholesterol Esters , Receptors, Lipoprotein , Fatty Acids , Obesity
10.
Nutrients ; 14(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36145145

ABSTRACT

Citrus fruits and juices are a major source of dietary flavanones, and the regular consumption of these foods is inversely associated with the development of cardiometabolic diseases. However, the biological benefits depend on the bioavailability of these compounds, and previous studies have reported a large interindividual variability in the absorption and excretion of these compounds. Different factors, such as age, gender or genetic polymorphism of genes coding enzymes involved in the metabolism and transport of the flavanones, may explain this heterogeneity. This study aimed to assess the impact of single nucleotide polymorphism of sulfotransferases SULT1A1 and SULT1C4, and ABCC2 transporter genes on excretion of phase II flavanone metabolites in volunteers after 24 h of orange juice intake. Forty-six volunteers ingested a single dose of 500 mL of orange juice and 24-h urine was collected. The hesperetin and naringenin phase II metabolites were quantified in urine, and SNPs in SULT1A1, SULT1C4 and ABCC2 genes were genotyped. A significant (p < 0.05) relationship between the SNPs in these genes and the high excretion of phase II flavanone metabolites were observed. These results identified novel polymorphisms associated with higher absorption of flavanones, which may provide bases for future personalized nutritional guidelines for consuming flavanone-rich foods rich in these nutrients for better benefit from their health properties.


Subject(s)
Citrus sinensis , Flavanones , Hesperidin , Arylsulfotransferase/genetics , Beverages/analysis , Citrus sinensis/genetics , Humans , Polymorphism, Single Nucleotide , Sulfotransferases/genetics
11.
Antioxidants (Basel) ; 11(3)2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35326155

ABSTRACT

Anthocyanins are an important group of phenolic compounds responsible for pigmentation in several plants. For humans, a regular intake is associated with a reduced risk of several diseases. However, molecular instability reduces the absorption and bioavailability of these compounds. Anthocyanins are degraded by external factors such as the presence of light, oxygen, temperature, and changes in pH ranges. In addition, the digestion process contributes to chemical degradation, mainly through the action of intestinal microbiota. The intestinal microbiota has a fundamental role in the biotransformation and metabolization of several dietary compounds, thus modifying the chemical structure, including anthocyanins. This biotransformation leads to low absorption of intact anthocyanins, and consequently, low bioavailability of these antioxidant compounds. Several studies have been conducted to seek alternatives to improve stability and protect against intestinal microbiota degradation. This comprehensive review aims to discuss the existing knowledge about the structure of anthocyanins while discussing human absorption, distribution, metabolism, and bioavailability after the oral consumption of anthocyanins. This review will highlight the use of nanotechnology systems to overcome anthocyanin biotransformation by the intestinal microbiota, pointing out the safety and effectiveness of nanostructures to maintain molecular stability.

12.
Food Funct ; 12(22): 11278-11289, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34713884

ABSTRACT

Hesperidin and narirutin are the major flavanones present in orange juice, and they are associated with a reduction in risk of cardiometabolic disease. However, there is heterogeneity in their biological responses, which is partly due to the large interindividual variation in these flavonoids' bioavailability. We investigated the relation between interindividual variability in the excretion of phase II conjugates and gut-derived phenolic acids, and cardiometabolic biomarkers response. Seventy-four subjects, both men and women, were included in a single-arm study. Over the 60 days, volunteers consumed 500 mL of orange juice daily. All measurements and blood collections were performed before and after the intervention period. Moreover, 24 h urine collection was performed after first consumption. Individuals were stratified according to the excretion of phase II conjugates and, for the first time, according to phenolic acids in high, medium, and low excretors. Furthermore, for the first time, the ratio between phenolic acids and flavanones-phase II conjugates has shown groups with different metabolization patterns. Groups with a low or intermediate ratio, corresponding to a higher amount of phase II conjugates excreted, showed a significant reduction in body fat % and blood pressure. This finding suggests that these improvements could be associated in a major way to flavanones-phase II conjugates, as well as to phenolic acids and stratification of volunteers according to metabolite excretions could be a good strategy to better understand the effects of orange juice on metabolism and health.


Subject(s)
Adipose Tissue/drug effects , Blood Pressure/drug effects , Citrus sinensis/chemistry , Flavanones/pharmacology , Hydroxybenzoates/pharmacology , Adult , Female , Fruit and Vegetable Juices , Humans , Male , Young Adult
13.
Food Res Int ; 147: 110521, 2021 09.
Article in English | MEDLINE | ID: mdl-34399499

ABSTRACT

Passiflora tenuifila is a Brazilian native passion fruit consumed by the local population and is a dietary source of bioactive compounds with potential biological activity. The aim of this study is to evaluate the nutritional value of P. tenuifila fruit and its bioactive compounds at two ripening stages. Three batches of fruit were collected at mature-green and ripe stages, and phenolic compounds, carotenoids, and polyamines were analyzed by HPLC-DAD and LC-MS/MS. The fruit is a good source of dietary fiber. Proanthocyanidin dimers are the major phenolic compounds (up to 84%) at both stages, followed by the C-glycosylated luteolin. Lutein and ß-carotene are the major carotenoids, contributing up to 50% of total carotenoids. The OPLS-DA segregates the mature-green and ripe fruits, as carotenoids are responsible for this separation. In conclusion, passion fruit can be consumed at both stages of maturation without losses of bioactive compound contents or nutritional value.


Subject(s)
Passiflora , Proanthocyanidins , Antioxidants , Carotenoids/analysis , Chromatography, Liquid , Dietary Fiber , Fruit/chemistry , Tandem Mass Spectrometry
14.
Nutrients ; 13(2)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573276

ABSTRACT

Large interindividual variations in the biological response to citrus flavanones have been observed, and this could be associated with high variations in their bioavailability. The aim of this study was to identify the main determinants underlying interindividual differences in citrus flavanone metabolism and excretion. In a randomized cross-over study, non-obese and obese volunteers, aged 19-40 years, ingested single doses of Pera and Moro orange juices, and urine was collected for 24 h. A large difference in the recovery of the urinary flavanone phase II metabolites was observed, with hesperetin-sulfate and hesperetin-sulfo-O-glucuronide being the major metabolites. Subjects were stratified according to their total excretion of flavanone metabolites as high, medium, and low excretors, but the expected correlation with the microbiome was not observed at the genus level. A second stratification was proposed according to phase II flavanone metabolism, whereby participants were divided into two excretion groups: Profiles A and B. Profile B individuals showed greater biotransformation of hesperetin-sulfate to hesperetin-sulfo-O-glucuronide, as well as transformation of flavanone-monoglucuronide to the respective diglucuronides, suggestive of an influence of polymorphisms on UDP-glucuronosyltransferase. In conclusion, this study proposes a new stratification of volunteers based on their metabolic profiles. Gut microbiota composition and polymorphisms of phase II enzymes may be related to the interindividual variability of metabolism.


Subject(s)
Citrus sinensis , Flavanones/metabolism , Fruit and Vegetable Juices/analysis , Metabolome , Adult , Biological Variation, Individual , Citrus sinensis/chemistry , Cross-Over Studies , Flavanones/analysis , Flavanones/urine , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics , Young Adult
15.
Matern Child Nutr ; 16 Suppl 3: e13005, 2020 12.
Article in English | MEDLINE | ID: mdl-33347721

ABSTRACT

Centralizing chemical composition data for biodiverse foods is an important strategy in promoting their consumption. To support this strategy, a dataset of foods based on Brazilian biodiversity was created. The set was based on data for foods produced or commercialized in Brazil; these data were previously compiled for the Brazilian Food Composition Table (TBCA), according to international guidelines. Inclusion criteria were based on the following indicators: (i) foods with description below species level; (ii) wild foods; and (iii) underutilized foods. The dataset contains 1,305 food entries, and the majority correspond to raw plant foods. Nutrient content in foods identified below species level exhibited a wide range of values. Underutilized foods presented similar or higher selected nutrient contents than commonly consumed foods. For instance, depending on the cultivar of sweet potato (Ipomoea batatas), vitamin A content ranged from a negligible amount to high content (0.33- to 3,637-µg retinol equivalents per 100-g edible portion on a fresh weight basis [EP]). Camu-camu (Myrciaria dubia), a fruit from Amazon, was identified as the richest source of vitamin C (2,300 mg of ascorbic acid per 100-g EP), corresponding to 48-fold the content of orange. The dataset provides evidence to promote nutrient-rich foods that may be integrated into more effective programmes and policies on nutrition and food security in Brazil. It can be accessed online, free of charge on the TBCA platform.


Subject(s)
Biodiversity , Fruit , Vitamin A , Brazil , Humans , Nutritional Status , Nutritive Value
16.
Food Funct ; 11(10): 8612-8624, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32959863

ABSTRACT

Cholesterol is one of the triggers of oxidative stress in the pancreatic-ß cell, generating high levels of reactive oxygen species, which leads to impairment of insulin synthesis and secretion. Bioactive compounds, such as citrus flavanones, which possess anti-inflammatory and antioxidant activities, could reduce oxidative stress in ß-cells and improve their function. We describe for the first time the protective effects of the phase-II flavanone metabolites [naringenin 7-O-glucuronide, hesperetin 3'-O-glucuronide, and hesperetin 7-O-glucuronide], and two flavanones-catabolites derived from gut microbiota metabolism [hippuric acid and 3-(4-hydroxyphenyl)propionic acid], on pancreatic ß-cell line MIN6 under oxidative stress, at physiologically relevant concentration. Cholesterol reduced cell viability in a dose and time-dependent manner, with an improvement in the presence of the metabolites. Moreover, flavanone metabolites attenuated oxidative stress by reducing levels of lipid peroxides, superoxide anions, and hydrogen peroxide. In response to the reduction of reactive oxygen species, a decrease in superoxide dismutase and glutathione peroxidase activities was observed; these activities were elevated by cholesterol. Moreover, all the flavanone metabolites improved mitochondrial function and insulin secretion, and reduced apoptosis. Flavanone metabolites were found uptake by ß-cells, and therefore could be responsible for the observed protective effects. These results demonstrated that circulating phase-II hesperetin and naringenin metabolites, and also phenolics derived from gut microbiota, protect pancreatic-ß cells against oxidative stress, leading to an improvement in ß-cell function and could be the bioactive molecules derived from the citrus consumption.


Subject(s)
Cholesterol/pharmacology , Citrus/chemistry , Flavanones/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Oxidative Stress/drug effects , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Flavanones/metabolism , Insulin/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Protective Agents/pharmacology
17.
Front Nutr ; 6: 188, 2019.
Article in English | MEDLINE | ID: mdl-31921881

ABSTRACT

Metabolic diseases can change the gut microbiota composition and function, and pathogenic bacteria contribute to the development of metabolic disorders. Polyphenols may act in the gut microbiota to favor the increase of beneficial bacteria and hamper the increase of pathogenic bacteria. In addition, the microbiota may act on polyphenols to increase their bioavailability. This two-way interactions between polyphenols and the gut microbiota could affect human metabolism and reduce cardiometabolic risk. Despite the possible benefits of polyphenols for human health through modulating the microbiome, studies are scarce, and present several limitations. This review provides an overview of the polyphenol-microbiota interactions and its effects on metabolic disorders.

18.
Food Res Int ; 107: 346-352, 2018 05.
Article in English | MEDLINE | ID: mdl-29580494

ABSTRACT

Citrus juices, especially orange juice, constitute rich sources of bioactive compounds with a wide range of health-promoting activities. Data from epidemiological and in vitro studies suggest that orange juice (OJ) may have a positive impact on lipid metabolism. However, the effect of orange juice intake on blood lipid profile is still poorly understood. We have used two different blood samples, Dried Blood Spots (DBS) and plasma, to assess the effect of two-week orange juice consumption in healthy volunteers by a mass-spectrometry based metabolomics approach. DBS were analysed by liquid chromatography mass spectrometry (LC-MS) and plasma samples were analysed by the gas chromatography mass spectrometry (GC-MS). One hundred sixty-nine lipids including acylcarnitines (AC), lysophosphatidylcholines (LysoPC), (diacyl- and acyl-alkyl-) phosphatidylcholines (PC aa and PC ae) and sphingomyelins (SM) were identified and quantified in DBS. Eighteen fatty acids were identified and quantified in plasma. Multivariate analysis allowed to identify an increase in C3:1, C5-DC(C6-OH), C5-M-DC, C5:1-DC, C8, C12-DC, lysoPC18:3, myristic acid, pentadecanoic acid, palmitoleic and palmitic acid and a decrease in nervonic acid, C0, C2, C10, C10:1, C16:1, C16-OH, C16:1-OH, C18-OH, PC aa C40:4, PC ae C38:4, PC ae C42:3, PC ae C42:4 and cholesterol levels after orange juice intake. A two-week period of orange juice intake could affect fatty acids ß-oxidation through mitochondrial and peroxisomal pathways, leading to an increase of short-chain acylcarnitines and a decrease of medium and long-chain acylcarnitines. This is the first report analyzing the effect of orange juice intake in healthy volunteers using a dried blood spot-based metabolomics approach.


Subject(s)
Carnitine/analogs & derivatives , Citrus sinensis/metabolism , Fruit and Vegetable Juices , Mass Spectrometry/methods , Metabolomics/methods , Adult , Carnitine/blood , Carnitine/metabolism , Chromatography, Liquid , Female , Gas Chromatography-Mass Spectrometry , Humans , Male , Middle Aged , Reference Values , Young Adult
19.
Food Sci. Technol (SBCTA, Impr.) ; 38(4): 561-576, Oct.-Dec. 2018. ilus
Article in English | LILACS | ID: biblio-999842

ABSTRACT

High postprandial glycemia in the non-diabetic population is one of the known universal mechanisms for the progression of noncommunicable diseases (NCDs), which have impacted the finances of both individuals and of health systems. In order to highlight the role of carbohydrates in glycemic control and its implications on health, the International Life Sciences Institute Brazil held an international workshop on "Carbohydrates, Glycemia and Health". Carbohydrate digestion rate is related to glycemic response, which mainly depends on the quality and amount of carbohydrate ingested, and thus it may be modulated by intrinsic and extrinsic factors. These effects can be verified by using different methods which evidence how physiology adapts in the uptake of glucose. Consumers can be aided with the knowledge/awareness of the benefits of high postprandial glycemia control in non-diabetic subjects. Multisectorial actions can contribute to decrease the onset and worsening of NCDs. A strategy indicated to the public in general to expand the availability of products that do not result in a sudden increase of postprandial plasma glucose and/or insulin would be to use alternative ingredients and/or technology in addition to making the legally allowed communication of benefits, which are supported by scientific studies.


Subject(s)
Humans , Male , Female , Effectiveness , Functional Food , Hyperglycemia , Health Systems , Carbohydrates , Dietary Fiber , Food , Noncommunicable Diseases , Noncommunicable Diseases/epidemiology
20.
Carbohydr Polym ; 164: 31-41, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28325331

ABSTRACT

Banana (Musa acuminata and M. acuminata x M. balbisiana) fruit cell walls are rich in mannans, homogalacturonans and xylogalacturonan, rhamnogalacturonan-I, and arabinogalactans, certain forms of which is considered to have immunomodulatory activity. The cultivars Nanicão and Thap Maeo represent two widely variants with respect to compositional differences in the forms of these polysaccharides. Nanicão has low amounts of mannan in the water-insoluble and water-soluble fraction. Both cultivars have high amounts of water-soluble arabinogalactan. These commelinoid monocots lack the (1→3),(1→4)-ß-d-glucans of grasses, but Thap Maeo has higher amounts of non-starch glucans associated with wild species than does Nanicão. High amount of callose was found in both cultivars. As immunomodulatory activity is associated with the fine structure and interaction of these polysaccharides, breeding programs to introgress disease resistance from wild species must account for these special structural features in retaining fruit quality and beneficial properties.


Subject(s)
Fruit/chemistry , Galactans/chemistry , Mannans/chemistry , Musa/chemistry , Galactans/pharmacology , Mannans/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...