Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38826324

ABSTRACT

Individual differences in neuroimaging are of interest to clinical and cognitive neuroscientists based on their potential for guiding the personalized treatment of various heterogeneous neurological conditions and diseases. Despite many advantages, the workhorse in this arena, BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI) suffers from low spatiotemporal resolution and specificity as well as a propensity for noise and spurious signal corruption. To better understand individual differences in BOLD-fMRI data, we can use animal models where fMRI, alongside complementary but more invasive contrasts, can be accessed. Here, we apply simultaneous wide-field fluorescence calcium imaging and BOLD-fMRI in mice to interrogate individual differences using a connectome-based identification framework adopted from the human fMRI literature. This approach yields high spatiotemporal resolution cell-type specific signals (here, from glia, excitatory, as well as inhibitory interneurons) from the whole cortex. We found mouse multimodal connectome-based identification to be successful and explored various features of these data.

2.
eNeuro ; 11(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38499355

ABSTRACT

Fueled by the recent and controversial brain-wide association studies in humans, the animal neuroimaging community has also begun questioning whether using larger sample sizes is necessary for ethical and effective scientific progress. In this opinion piece, we illustrate two opposing views on sample size extremes in MRI-based animal neuroimaging.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Animals , Humans , Neuroimaging/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging
3.
Nat Commun ; 15(1): 229, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172111

ABSTRACT

Large-scale functional networks have been characterized in both rodent and human brains, typically by analyzing fMRI-BOLD signals. However, the relationship between fMRI-BOLD and underlying neural activity is complex and incompletely understood, which poses challenges to interpreting network organization obtained using this technique. Additionally, most work has assumed a disjoint functional network organization (i.e., brain regions belong to one and only one network). Here, we employ wide-field Ca2+ imaging simultaneously with fMRI-BOLD in mice expressing GCaMP6f in excitatory neurons. We determine cortical networks discovered by each modality using a mixed-membership algorithm to test the hypothesis that functional networks exhibit overlapping organization. We find that there is considerable network overlap (both modalities) in addition to disjoint organization. Our results show that multiple BOLD networks are detected via Ca2+ signals, and networks determined by low-frequency Ca2+ signals are only modestly more similar to BOLD networks. In addition, the principal gradient of functional connectivity is nearly identical for BOLD and Ca2+ signals. Despite similarities, important differences are also detected across modalities, such as in measures of functional connectivity strength and diversity. In conclusion, Ca2+ imaging uncovers overlapping functional cortical organization in the mouse that reflects several, but not all, properties observed with fMRI-BOLD signals.


Subject(s)
Brain Mapping , Brain , Humans , Mice , Animals , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Algorithms , Neurons
4.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38100331

ABSTRACT

Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.


Subject(s)
Anesthesia , Magnetic Resonance Imaging , Humans , Mice , Rats , Animals , Magnetic Resonance Imaging/methods , Wakefulness , Brain/diagnostic imaging , Brain Mapping
5.
Front Neurosci ; 17: 1285396, 2023.
Article in English | MEDLINE | ID: mdl-38075286

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is associated with both functional and microstructural connectome disruptions. We deployed a novel methodology using functionally defined nodes to guide white matter (WM) tractography and identify ASD-related microstructural connectome changes across the lifespan. Methods: We used diffusion tensor imaging and clinical data from four studies in the national database for autism research (NDAR) including 155 infants, 102 toddlers, 230 adolescents, and 96 young adults - of whom 264 (45%) were diagnosed with ASD. We applied cortical nodes from a prior fMRI study identifying regions related to symptom severity scores and used these seeds to construct WM fiber tracts as connectome Edge Density (ED) maps. Resulting ED maps were assessed for between-group differences using voxel-wise and tract-based analysis. We then examined the association of ASD diagnosis with ED driven from functional nodes generated from different sensitivity thresholds. Results: In ED derived from functionally guided tractography, we identified ASD-related changes in infants (pFDR ≤ 0.001-0.483). Overall, more wide-spread ASD-related differences were detectable in ED based on functional nodes with positive symptom correlation than negative correlation to ASD, and stricter thresholds for functional nodes resulted in stronger correlation with ASD among infants (z = -6.413 to 6.666, pFDR ≤ 0.001-0.968). Voxel-wise analysis revealed wide-spread ED reductions in central WM tracts of toddlers, adolescents, and adults. Discussion: We detected early changes of aberrant WM development in infants developing ASD when generating microstructural connectome ED map with cortical nodes defined by functional imaging. These were not evident when applying structurally defined nodes, suggesting that functionally guided DTI-based tractography can help identify early ASD-related WM disruptions between cortical regions exhibiting abnormal connectivity patterns later in life. Furthermore, our results suggest a benefit of involving functionally informed nodes in diffusion imaging-based probabilistic tractography, and underline that different age cohorts can benefit from age- and brain development-adapted image processing protocols.

6.
Cereb Cortex ; 33(10): 6320-6334, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36573438

ABSTRACT

Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.


Subject(s)
Attention , Autism Spectrum Disorder , Brain , Connectome , Humans , Adolescent , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/psychology , Datasets as Topic , Male , Female , Brain/physiopathology , Brain/ultrastructure
7.
Int J Mol Sci ; 25(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38203602

ABSTRACT

Up to 50% of patients with severe congenital heart disease (CHD) develop life-altering neurodevelopmental disability (NDD). It has been presumed that NDD arises in CHD cases because of hypoxia before, during, or after cardiac surgery. Recent studies detected an enrichment in de novo mutations in CHD and NDD, as well as significant overlap between CHD and NDD candidate genes. However, there is limited evidence demonstrating that genes causing CHD can produce NDD independent of hypoxia. A patient with hypoplastic left heart syndrome and gross motor delay presented with a de novo mutation in SMC5. Modeling mutation of smc5 in Xenopus tropicalis embryos resulted in reduced heart size, decreased brain length, and disrupted pax6 patterning. To evaluate the cardiac development, we induced the conditional knockout (cKO) of Smc5 in mouse cardiomyocytes, which led to the depletion of mature cardiomyocytes and abnormal contractility. To test a role for Smc5 specifically in the brain, we induced cKO in the mouse central nervous system, which resulted in decreased brain volume, and diminished connectivity between areas related to motor function but did not affect vascular or brain ventricular volume. We propose that genetic factors, rather than hypoxia alone, can contribute when NDD and CHD cases occur concurrently.


Subject(s)
Heart Defects, Congenital , Humans , Animals , Mice , Heart Defects, Congenital/genetics , Brain , Heart Ventricles , Hypoxia , Myocytes, Cardiac , Xenopus , Chromosomal Proteins, Non-Histone , Cell Cycle Proteins/genetics , Xenopus Proteins
8.
Neurophotonics ; 9(3): 032202, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36159712

ABSTRACT

Brain organization is evident across spatiotemporal scales as well as from structural and functional data. Yet, translating from micro- to macroscale (vice versa) as well as between different measures is difficult. Reconciling disparate observations from different modes is challenging because each specializes within a restricted spatiotemporal milieu, usually has bounded organ coverage, and has access to different contrasts. True intersubject biological heterogeneity, variation in experiment implementation (e.g., use of anesthesia), and true moment-to-moment variations in brain activity (maybe attributable to different brain states) also contribute to variability between studies. Ultimately, for a deeper and more actionable understanding of brain organization, an ability to translate across scales, measures, and species is needed. Simultaneous multimodal methods can contribute to bettering this understanding. We consider four modes, three optically based: multiphoton imaging, single-photon (wide-field) imaging, and fiber photometry, as well as magnetic resonance imaging. We discuss each mode as well as their pairwise combinations with regard to the definition and study of brain networks.

9.
Front Neurosci ; 16: 957018, 2022.
Article in English | MEDLINE | ID: mdl-36161157

ABSTRACT

There has been increasing evidence of White Matter (WM) microstructural disintegrity and connectome disruption in Autism Spectrum Disorder (ASD). We evaluated the effects of age on WM microstructure by examining Diffusion Tensor Imaging (DTI) metrics and connectome Edge Density (ED) in a large dataset of ASD and control patients from different age cohorts. N = 583 subjects from four studies from the National Database of Autism Research were included, representing four different age groups: (1) A Longitudinal MRI Study of Infants at Risk of Autism [infants, median age: 7 (interquartile range 1) months, n = 155], (2) Biomarkers of Autism at 12 months [toddlers, 32 (11)m, n = 102], (3) Multimodal Developmental Neurogenetics of Females with ASD [adolescents, 13.1 (5.3) years, n = 230], (4) Atypical Late Neurodevelopment in Autism [young adults, 19.1 (10.7)y, n = 96]. For each subject, we created Fractional Anisotropy (FA), Mean- (MD), Radial- (RD), and Axial Diffusivity (AD) maps as well as ED maps. We performed voxel-wise and tract-based analyses to assess the effects of age, ASD diagnosis and sex on DTI metrics and connectome ED. We also optimized, trained, tested, and validated different combinations of machine learning classifiers and dimensionality reduction algorithms for prediction of ASD diagnoses based on tract-based DTI and ED metrics. There is an age-dependent increase in FA and a decline in MD and RD across WM tracts in all four age cohorts, as well as an ED increase in toddlers and adolescents. After correction for age and sex, we found an ASD-related decrease in FA and ED only in adolescents and young adults, but not in infants or toddlers. While DTI abnormalities were mostly limited to the corpus callosum, connectomes showed a more widespread ASD-related decrease in ED. Finally, the best performing machine-leaning classification model achieved an area under the receiver operating curve of 0.70 in an independent validation cohort. Our results suggest that ASD-related WM microstructural disintegrity becomes evident in adolescents and young adults-but not in infants and toddlers. The ASD-related decrease in ED demonstrates a more widespread involvement of the connectome than DTI metrics, with the most striking differences being localized in the corpus callosum.

10.
Biol Psychiatry ; 92(8): 626-642, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35690495

ABSTRACT

Autism is a heterogeneous neurodevelopmental condition, and functional magnetic resonance imaging-based studies have helped advance our understanding of its effects on brain network activity. We review how predictive modeling, using measures of functional connectivity and symptoms, has helped reveal key insights into this condition. We discuss how different prediction frameworks can further our understanding of the brain-based features that underlie complex autism symptomatology and consider how predictive models may be used in clinical settings. Throughout, we highlight aspects of study interpretation, such as data decay and sampling biases, that require consideration within the context of this condition. We close by suggesting exciting future directions for predictive modeling in autism.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Connectome , Autism Spectrum Disorder/diagnostic imaging , Autistic Disorder/diagnostic imaging , Brain/diagnostic imaging , Forecasting , Humans , Magnetic Resonance Imaging
11.
Neuroimage ; 258: 119364, 2022 09.
Article in English | MEDLINE | ID: mdl-35690257

ABSTRACT

Even when subjects are at rest, it is thought that brain activity is organized into distinct brain states during which reproducible patterns are observable. Yet, it is unclear how to define or distinguish different brain states. A potential source of brain state variation is arousal, which may play a role in modulating functional interactions between brain regions. Here, we use simultaneous resting state functional magnetic resonance imaging (fMRI) and pupillometry to study the impact of arousal levels indexed by pupil area on the integration of large-scale brain networks. We employ a novel sparse dictionary learning-based method to identify hub regions participating in between-network integration stratified by arousal, by measuring k-hubness, the number (k) of functionally overlapping networks in each brain region. We show evidence of a brain-wide decrease in between-network integration and inter-subject variability at low relative to high arousal, with differences emerging across regions of the frontoparietal, default mode, motor, limbic, and cerebellum networks. State-dependent changes in k-hubness relate to the actual patterns of network integration within these hubs, suggesting a brain state transition from high to low arousal characterized by global synchronization and reduced network overlaps. We demonstrate that arousal is not limited to specific brain areas known to be directly associated with arousal regulation, but instead has a brain-wide impact that involves high-level between-network communications. Lastly, we show a systematic change in pairwise fMRI signal correlation structures in the arousal state-stratified data, and demonstrate that the choice of global signal regression could result in different conclusions in conventional graph theoretical analysis and in the analysis of k-hubness when studying arousal modulations. Together, our results suggest the presence of global and local effects of pupil-linked arousal modulations on resting state brain functional connectivity.


Subject(s)
Brain , Magnetic Resonance Imaging , Arousal/physiology , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Pupil/physiology
12.
Neurophotonics ; 9(Suppl 1): 013001, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35493335

ABSTRACT

Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.

13.
Nat Neurosci ; 25(4): 458-473, 2022 04.
Article in English | MEDLINE | ID: mdl-35379995

ABSTRACT

Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.


Subject(s)
Hydrocephalus , Animals , Biomechanical Phenomena , Brain/metabolism , Cerebrospinal Fluid/metabolism , Humans , Hydrocephalus/cerebrospinal fluid , Hydrocephalus/genetics , Mice , Neurogenesis/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Exome Sequencing
14.
Curr Biol ; 32(3): R138-R140, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35134364

ABSTRACT

Brain activity during consciousness has a unique spatiotemporal signature that is evolutionarily conserved. A recent study uses functional magnetic resonance imaging to show how spontaneous activity in the murine brain reconfigures with wakefulness.


Subject(s)
Consciousness , Wakefulness , Animals , Brain , Brain Mapping , Magnetic Resonance Imaging/methods , Mice
16.
Neuroimage ; 236: 118044, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33848621

ABSTRACT

It is a longstanding goal of neuroimaging to produce reliable, generalizable models of brain behavior relationships. More recently, data driven predictive models have become popular. However, overfitting is a common problem with statistical models, which impedes model generalization. Cross validation (CV) is often used to estimate expected model performance within sample. Yet, the best way to generate brain behavior models, and apply them out-of-sample, on an unseen dataset, is unclear. As a solution, this study proposes an ensemble learning method, in this case resample aggregating, encompassing both model parameter estimation and feature selection. Here we investigate the use of resampled aggregated models when used to estimate fluid intelligence (fIQ) from fMRI based functional connectivity (FC) data. We take advantage of two large openly available datasets, the Human Connectome Project (HCP), and the Philadelphia Neurodevelopmental Cohort (PNC). We generate aggregated and non-aggregated models of fIQ in the HCP, using the Connectome Prediction Modelling (CPM) framework. Over various test-train splits, these models are evaluated in sample, on left-out HCP data, and out-of-sample, on PNC data. We find that a resample aggregated model performs best both within- and out-of-sample. We also find that feature selection can vary substantially within-sample. More robust feature selection methods, as detailed here, are needed to improve cross sample performance of CPM based brain behavior models.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Connectome/methods , Intelligence/physiology , Models, Theoretical , Adolescent , Adult , Child , Connectome/standards , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
17.
Cereb Cortex ; 31(5): 2523-2533, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33345271

ABSTRACT

Memory deficits are observed in a range of psychiatric disorders, but it is unclear whether memory deficits arise from a shared brain correlate across disorders or from various dysfunctions unique to each disorder. Connectome-based predictive modeling is a computational method that captures individual differences in functional connectomes associated with behavioral phenotypes such as memory. We used publicly available task-based functional MRI data from patients with schizophrenia (n = 33), bipolar disorder (n = 34), attention deficit hyper-activity disorder (n = 32), and healthy controls (n = 73) to model the macroscale brain networks associated with working, short- and long-term memory. First, we use 10-fold and leave-group-out analyses to demonstrate that the same macroscale brain networks subserve memory across diagnostic groups and that individual differences in memory performance are related to individual differences within networks distributed throughout the brain, including the subcortex, default mode network, limbic network, and cerebellum. Next, we show that diagnostic groups are associated with significant differences in whole-brain functional connectivity that are distinct from the predictive models of memory. Finally, we show that models trained on the transdiagnostic sample generalize to novel, healthy participants (n = 515) from the Human Connectome Project. These results suggest that despite significant differences in whole-brain patterns of functional connectivity between diagnostic groups, the core macroscale brain networks that subserve memory are shared.


Subject(s)
Brain/diagnostic imaging , Connectome , Memory , Mental Disorders/diagnostic imaging , Adult , Association , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/physiopathology , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/physiopathology , Brain/physiopathology , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Memory, Short-Term/physiology , Mental Disorders/physiopathology , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Spatial Memory/physiology , Young Adult
18.
Nat Hum Behav ; 5(2): 185-193, 2021 02.
Article in English | MEDLINE | ID: mdl-33288916

ABSTRACT

Large datasets that enable researchers to perform investigations with unprecedented rigor are growing increasingly common in neuroimaging. Due to the simultaneous increasing popularity of open science, these state-of-the-art datasets are more accessible than ever to researchers around the world. While analysis of these samples has pushed the field forward, they pose a new set of challenges that might cause difficulties for novice users. Here we offer practical tips for working with large datasets from the end-user's perspective. We cover all aspects of the data lifecycle: from what to consider when downloading and storing the data to tips on how to become acquainted with a dataset one did not collect and what to share when communicating results. This manuscript serves as a practical guide one can use when working with large neuroimaging datasets, thus dissolving barriers to scientific discovery.


Subject(s)
Access to Information , Datasets as Topic , Neuroimaging , Biomedical Research , Humans
19.
Nat Methods ; 17(12): 1262-1271, 2020 12.
Article in English | MEDLINE | ID: mdl-33139894

ABSTRACT

Achieving a comprehensive understanding of brain function requires multiple imaging modalities with complementary strengths. We present an approach for concurrent widefield optical and functional magnetic resonance imaging. By merging these modalities, we can simultaneously acquire whole-brain blood-oxygen-level-dependent (BOLD) and whole-cortex calcium-sensitive fluorescent measures of brain activity. In a transgenic murine model, we show that calcium predicts the BOLD signal, using a model that optimizes a gamma-variant transfer function. We find consistent predictions across the cortex, which are best at low frequency (0.009-0.08 Hz). Furthermore, we show that the relationship between modality connectivity strengths varies by region. Our approach links cell-type-specific optical measurements of activity to the most widely used method for assessing human brain function.


Subject(s)
Brain Mapping/methods , Calcium-Binding Proteins/metabolism , Cerebral Cortex/diagnostic imaging , Magnetic Resonance Imaging/methods , Animals , Blood Gas Analysis , Calcium/metabolism , Calcium-Binding Proteins/genetics , Fluorescence , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Transgenic , Oxygen/analysis
20.
Biol Psychiatry ; 86(4): 315-326, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31010580

ABSTRACT

BACKGROUND: Autism spectrum disorder and attention-deficit/hyperactivity disorder (ADHD) are associated with complex changes as revealed by functional magnetic resonance imaging. To date, neuroimaging-based models are not able to characterize individuals with sufficient sensitivity and specificity. Further, although evidence shows that ADHD traits occur in individuals with autism spectrum disorder, and autism spectrum disorder traits in individuals with ADHD, the neurofunctional basis of the overlap is undefined. METHODS: Using individuals from the Autism Brain Imaging Data Exchange and ADHD-200, we apply a data-driven, subject-level approach, connectome-based predictive modeling, to resting-state functional magnetic resonance imaging data to identify brain-behavior associations that are predictive of symptom severity. We examine cross-diagnostic commonalities and differences. RESULTS: Using leave-one-subject-out and split-half analyses, we define networks that predict Social Responsiveness Scale, Autism Diagnostic Observation Schedule, and ADHD Rating Scale scores and confirm that these networks generalize to novel subjects. Networks share minimal overlap of edges (<2%) but some common regions of high hubness (Brodmann areas 10, 11, and 21, cerebellum, and thalamus). Further, predicted Social Responsiveness Scale scores for individuals with ADHD are linked to ADHD symptoms, supporting the hypothesis that brain organization relevant to autism spectrum disorder severity shares a component associated with attention in ADHD. Predictive connections and high-hubness regions are found within a wide range of brain areas and across conventional networks. CONCLUSIONS: An individual's functional connectivity profile contains information that supports dimensional, nonbinary classification in autism spectrum disorder and ADHD. Furthermore, we can determine disorder-specific and shared neurofunctional pathology using our method.


Subject(s)
Attention Deficit Disorder with Hyperactivity/physiopathology , Autism Spectrum Disorder/physiopathology , Cerebral Cortex/physiopathology , Connectome , Nerve Net/physiopathology , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Autism Spectrum Disorder/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Female , Humans , Linear Models , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Social Skills
SELECTION OF CITATIONS
SEARCH DETAIL
...