Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Lancet Microbe ; 5(2): e173-e180, 2024 02.
Article in English | MEDLINE | ID: mdl-38244555

ABSTRACT

BACKGROUND: Whole-genome sequencing (WGS) is the gold standard diagnostic tool to identify and genetically characterise emerging pathogen mutations (variants), but cost, capacity, and timeliness limit its use when large populations need rapidly assessing. We assessed the potential of genotyping assays to provide accurate and timely variant information at scale by retrospectively examining surveillance for SARS-CoV-2 variants in England between March and September, 2021, when genotyping assays were used widely for variant detection. METHODS: We chose a panel of four RT-PCR genotyping assays to detect circulating variants of SARS-COV-2 in England and developed a decision algorithm to assign a probable SARS-CoV-2 variant to samples using the assay results. We extracted surveillance data from the UK Health Security Agency databases for 115 934 SARS-CoV-2-positive samples (March 1-Sept 6, 2021) when variant information was available from both genotyping and WGS. By comparing the genotyping and WGS variant result, we calculated accuracy metrics (ie, sensitivity, specificity, and positive predictive value [PPV]) and the time difference between the sample collection date and the availability of variant information. We assessed the number of samples with a variant assigned from genotyping or WGS, or both, over time. FINDINGS: Genotyping and an initial decision algorithm (April 10-May 11, 2021 data) were accurate for key variant assignment: sensitivities and PPVs were 0·99 (95% CI 0·99-0·99) for the alpha, 1·00 (1·00-1·00) for the beta, and 0·91 (0·80-1·00) for the gamma variants; specificities were 0·97 (0·96-0·98), 1·00 (1·00-1·00), and 1·00 (1·00-1·00), respectively. A subsequent decision algorithm over a longer time period (May 27-Sept 6, 2021 data) remained accurate for key variant assignment: sensitivities were 0·91 (95% CI 0·74-1·00) for the beta, 0·98 (0·98-0·99) for the delta, and 0·93 (0·81-1·00) for the gamma variants; specificities were 1·00 (1·00-1·00), 0·96 (0·96-0·97), and 1·00 (1·00-1·00), respectively; and PPVs were 0·83 (0·62-1·00), 1·00 (1·00-1·00), and 0·78 (0·59-0·97), respectively. Genotyping produced variant information a median of 3 days (IQR 2-4) after the sample collection date, which was faster than with WGS (9 days [8-11]). The flexibility of genotyping enabled a nine-times increase in the quantity of samples tested for variants by this method (from 5000 to 45 000). INTERPRETATION: RT-PCR genotyping assays are suitable for high-throughput variant surveillance and could complement WGS, enabling larger scale testing for known variants and timelier results, with important implications for effective public health responses and disease control globally, especially in settings with low WGS capacity. However, the choice of panels of RT-PCR assays is highly dependent on database information on circulating variants generated by WGS, which could limit the use of genotyping assays when new variants are emerging and spreading rapidly. FUNDING: UK Health Security Agency and National Institute for Health Research Health Protection Research Unit in Emergency Preparedness and Response.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Genotype , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , England/epidemiology , COVID-19 Testing
2.
Prev Med ; 177: 107774, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37992976

ABSTRACT

Installation of technologies to remove or deactivate respiratory pathogens from indoor air is a plausible non-pharmaceutical infectious disease control strategy. OBJECTIVE: We undertook a systematic review of worldwide observational and experimental studies, published 1970-2022, to synthesise evidence about the effectiveness of suitable indoor air treatment technologies to prevent respiratory or gastrointestinal infections. METHODS: We searched for data about infection and symptom outcomes for persons who spent minimum 20 h/week in shared indoor spaces subjected to air treatment strategies hypothesised to change risk of respiratory or gastrointestinal infections or symptoms. RESULTS: Pooled data from 32 included studies suggested no net benefits of air treatment technologies for symptom severity or symptom presence, in absence of confirmed infection. Infection incidence was lower in three cohort studies for persons exposed to high efficiency particulate air filtration (RR 0.4, 95%CI 0.28-0.58, p < 0.001) and in one cohort study that combined ionisers with electrostatic nano filtration (RR 0.08, 95%CI 0.01-0.60, p = 0.01); other types of air treatment technologies and air treatment in other study designs were not strongly linked to fewer infections. The infection outcome data exhibited strong publication bias. CONCLUSIONS: Although environmental and surface samples are reduced after air treatment by several air treatment strategies, especially germicidal lights and high efficiency particulate air filtration, robust evidence has yet to emerge that these technologies are effective at reducing respiratory or gastrointestinal infections in real world settings. Data from several randomised trials have yet to report and will be welcome to the evidence base.


Subject(s)
Respiratory Tract Infections , Humans , Cohort Studies , Respiratory Tract Infections/prevention & control
3.
Lancet Public Health ; 8(11): e850-e858, 2023 11.
Article in English | MEDLINE | ID: mdl-37832574

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, cases were tracked using multiple surveillance systems. Some systems were completely novel, and others incorporated multiple data streams to estimate case incidence and prevalence. How well these different surveillance systems worked as epidemic indicators is unclear, which has implications for future disease surveillance and outbreak management. The aim of this study was to compare case counts, prevalence and incidence, timeliness, and comprehensiveness of different COVID-19 surveillance systems in England. METHODS: For this retrospective observational study of COVID-19 surveillance systems in England, data from 12 surveillance systems were extracted from publicly available sources (Jan 1, 2020-Nov 30, 2021). The main outcomes were correlations between different indicators of COVID-19 incidence or prevalence. These data were integrated as daily time-series and comparisons undertaken using Spearman correlation between candidate alternatives and the most timely (updated daily, clinical case register) and the least biased (from comprehensive household sampling) COVID-19 epidemic indicators, with comparisons focused on the period of Sept 1, 2020-Nov 30, 2021. FINDINGS: Spearman statistic correlations during the full focus period between the least biased indicator (from household surveys) and other epidemic indicator time-series were 0·94 (95% CI 0·92 to 0·95; clinical cases, the most timely indicator), 0·92 (0·90 to 0·94; estimates of incidence generated after incorporating information about self-reported case status on the ZoeApp, which is a digital app), 0·67 (95% CI 0·60 to 0·73, emergency department attendances), 0·64 (95% CI 0·60 to 0·68, NHS 111 website visits), 0·63 (95% CI 0·56 to 0·69, wastewater viral genome concentrations), 0·60 (95% CI 0·52 to 0·66, admissions to hospital with positive COVID-19 status), 0·45 (95% CI 0·36 to 0·52, NHS 111 calls), 0·08 (95% CI -0·03 to 0·18, Google search rank for "covid"), -0·04 (95% CI -0·12 to 0·05, in-hours consultations with general practitioners), and -0·37 (95% CI -0·46 to -0·28, Google search rank for "coronavirus"). Time lags (-14 to +14 days) did not markedly improve these rho statistics. Clinical cases (the most timely indicator) captured a more consistent proportion of cases than the self-report digital app did. INTERPRETATION: A suite of monitoring systems is useful. The household survey system was the most comprehensive and least biased epidemic monitor, but not very timely. Data from laboratory testing, the self-reporting digital app, and attendances to emergency departments were comparatively useful, fairly accurate, and timely epidemic trackers. FUNDING: National Institute for Health and Care Research Health Protection Research Unit in Emergency Preparedness and Response, a partnership between the UK Health Security Agency, King's College London, and the University of East Anglia.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics/prevention & control , England/epidemiology , Retrospective Studies , London
4.
J Emerg Manag ; 21(7): 85-96, 2023.
Article in English | MEDLINE | ID: mdl-37154447

ABSTRACT

The COVID-19 pandemic had a global reach and impact, introducing stay at home orders, social distancing, facemask wearing, and closing national and international borders. Yet, the need for international disaster aid as a result of previous disasters and ongoing crises remained present. Interviews with staff from United Kingdom aid agencies and their partner organizations examined how development and humanitarian activities changed during the first six months of the pandemic. Seven key themes were highlighted. The need to recognize individual country contexts and experiences when dealing with a pandemic was emphasized, together with appropriate strategic decisions around guidance and supporting staff and the value of learning from previous experiences. Restrictions limited agencies' ability to monitor programs and ensure accountability effectively, but relationships between partners adjusted, with a move to a greater reliance on local partners and increased empowerment in these groups. Trust was vital to allow for the continuation of programs and services during the first months of the pandemic. Most programs continued but with significant adaptations. An enhanced use of communication technology was a key adaptation, though caveats remained around access. Concern around safeguarding and stigmatization of vulnerable groups was reported as an increasing issue in some contexts. The impact of COVID-19 restrictions on ongoing disaster aid was rapid and extensive, forcing aid agencies at different scales to work swiftly to try to ensure as little disruption as possible, and -generating important lessons for both the ongoing and future crises.


Subject(s)
COVID-19 , Disasters , Humans , COVID-19/epidemiology , Pandemics
5.
Sci Total Environ ; 892: 164441, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37245822

ABSTRACT

Some types of poultry bedding made from recycled materials have been reported to contain environmental contaminants such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, dioxins), polychlorinated biphenyls (PCBs) brominated flame retardants (BFRs) polychlorinated naphthalenes (PCNs), polybrominated dioxins (PBDD/Fs), perfluoroalkyl substances (PFAS), etc. In one of the first studies of its kind, the uptake of these contaminants by chicken muscle tissue, liver, and eggs from three types of recycled, commercially available bedding material was simultaneously investigated using conventional husbandry to raise day old chickens to maturity. A weight of evidence analysis showed that PCBs, polybrominated diphenylethers (PBDEs), PCDD/Fs, PCNs and PFAS displayed the highest potential for uptake which varied depending on the type of bedding material used. During the first three to four months of laying, an increasing trend was observed in the concentrations of ΣTEQ (summed toxic equivalence of PCDD/Fs, PCBs, PBDD/Fs, PCNs and polybrominated biphenyls), NDL-PCBs and PBDEs in the eggs of chickens raised on shredded cardboard. Further analysis using bio-transfer factors (BTFs) when egg production reached a steady state, revealed that some PCB congeners (PCBs 28, 81, 138, 153 and 180) irrespective of molecular configuration or chlorine number, showed the highest tendency for uptake. Conversely, BTFs for PBDEs showed good correlation with bromine number, increasing to a maximum value for BDE-209. This relationship was reversed for PCDFs (and to some extent for PCDDs) with tetra- and penta- chlorinated congeners showing a greater tendency for selective uptake. The overall patterns were consistent, although some variability in BTF values was observed between tested materials which may relate to differences in bioavailability. The results indicate a potentially overlooked source of food chain contamination as other livestock products (cow's milk, lamb, beef, duck, etc.) could be similarly impacted.


Subject(s)
Dioxins , Fluorocarbons , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Female , Cattle , Animals , Sheep , Dioxins/analysis , Polychlorinated Biphenyls/analysis , Chickens , Polychlorinated Dibenzodioxins/analysis , Dibenzofurans/analysis , Halogenated Diphenyl Ethers/analysis , Fluorocarbons/analysis , Dibenzofurans, Polychlorinated/analysis , Environmental Monitoring
6.
Pathog Glob Health ; 117(7): 655-663, 2023 10.
Article in English | MEDLINE | ID: mdl-37016510

ABSTRACT

Most Shiga toxin-producing E. coli (STEC) infections are sporadic. Routine enhanced surveillance questionnaires of confirmed STEC cases in England contained promising data to conduct a case-control study to identify non-food exposures linked to the risk of becoming infected with different STEC serotypes, including O157, O26 and all others; this study pulled eligible cases from the recorded enhanced surveillance data. Controls were recruited from the general population and answered a comparable postal questionnaire. Logistic regression was performed to identify risk factors associated with STEC infection for O157, O26 and other serotype cases. In adjusted models, travel outside of the U.K. and childcare occupations raised the risk of infection for all serotypes. Day trips within the UK, exposure to dogs and contact with soil were linked to lower infection risk. Resident region within England was often linked to decreased risk. Summer season was linked to O157 and O26, but not other STEC. Swimming in the sea was linked to increased risk of infection by O157, but not other types of STEC. Correlations between exposures and infection were similar when the analysis was repeated excluding participants with a history of foreign travel. As the first case-control study in England to include sporadic non-O157 STEC, the varying risk factors between O157 and non-O157 cases suggest there are potentially unique reservoirs for different serotypes.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Humans , Animals , Dogs , Serogroup , Case-Control Studies , Escherichia coli Proteins/genetics , Escherichia coli Infections/epidemiology , Risk Factors
7.
Ann Epidemiol ; 82: 66-76.e6, 2023 06.
Article in English | MEDLINE | ID: mdl-37001627

ABSTRACT

PURPOSE: Most index cases with novel coronavirus infections transmit disease to just one or two other individuals, but some individuals "super-spread"-they infect many secondary cases. Understanding common factors that super-spreaders may share could inform outbreak models, and be used to guide contact tracing during outbreaks. METHODS: We searched in MEDLINE, Scopus, and preprints to identify studies about people documented as transmitting pathogens that cause SARS, MERS, or COVID-19 to at least nine other people. We extracted data to describe them by age, sex, location, occupation, activities, symptom severity, any underlying conditions, disease outcome and undertook quality assessment for outbreaks published by June 2021. RESULTS: The most typical super-spreader was a male age 40+. Most SARS or MERS super-spreaders were very symptomatic, the super-spreading occurred in hospital settings and frequently the individual died. In contrast, COVID-19 super-spreaders often had very mild disease and most COVID-19 super-spreading happened in community settings. CONCLUSIONS: SARS and MERS super-spreaders were often symptomatic, middle- or older-age adults who had a high mortality rate. In contrast, COVID-19 super-spreaders tended to have mild disease and were any adult age. More outbreak reports should be published with anonymized but useful demographic information to improve understanding of super-spreading, super-spreaders, and the settings in which super-spreading happens.


Subject(s)
COVID-19 , Adult , Male , Humans , COVID-19/epidemiology , SARS-CoV-2 , Disease Outbreaks
8.
Sci Rep ; 13(1): 3893, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959189

ABSTRACT

Vibrio vulnificus is an opportunistic bacterial pathogen, occurring in warm low-salinity waters. V. vulnificus wound infections due to seawater exposure are infrequent but mortality rates are high (~ 18%). Seawater bacterial concentrations are increasing but changing disease pattern assessments or climate change projections are rare. Here, using a 30-year database of V. vulnificus cases for the Eastern USA, changing disease distribution was assessed. An ecological niche model was developed, trained and validated to identify links to oceanographic and climate data. This model was used to predict future disease distribution using data simulated by seven Global Climate Models (GCMs) which belong to the newest Coupled Model Intercomparison Project (CMIP6). Risk was estimated by calculating the total population within 200 km of the disease distribution. Predictions were generated for different "pathways" of global socioeconomic development which incorporate projections of greenhouse gas emissions and demographic change. In Eastern USA between 1988 and 2018, V. vulnificus wound infections increased eightfold (10-80 cases p.a.) and the northern case limit shifted northwards 48 km p.a. By 2041-2060, V. vulnificus infections may expand their current range to encompass major population centres around New York (40.7°N). Combined with a growing and increasingly elderly population, annual case numbers may double. By 2081-2100 V. vulnificus infections may be present in every Eastern USA State under medium-to-high future emissions and warming. The projected expansion of V. vulnificus wound infections stresses the need for increased individual and public health awareness in these areas.


Subject(s)
Vibrio Infections , Vibrio vulnificus , Wound Infection , Humans , Aged , Vibrio Infections/epidemiology , North America
9.
Am J Infect Control ; 51(7): 792-799, 2023 07.
Article in English | MEDLINE | ID: mdl-36332725

ABSTRACT

BACKGROUND: Staff actions to prevent infection introduction and transmission in long-term care facilities (LTCFs) were key to reducing morbidity and mortality from COVID-19. Implementing infection control measures (ICMs) requires training, adherence and complex decision making while trying to deliver high quality care. We surveyed LTCF staff in England about their preparedness and morale at 3 timepoints during the COVID-19 epidemic. METHODS: Online structured survey targeted at LTCF workers (any role) administered at 3 timepoints (November 2020-January 2021; August-November 2021; March-May 2022). Narrative summary of answers, narrative and statistical summary (proportionality with Pearson's chi-square or Fisher's Exact Test) of possible differences in answers between waves. RESULTS: Across all 3 survey waves, 387 responses were received. Morale, attitudes towards working environment and perception about colleague collaboration were mostly positive at all survey points. Infection control training was perceived as adequate. Staff felt mostly positive emotions at work. The working environment remained challenging. Masks were the single form of PPE most consistently used; eye protection the least used. Mask-wearing was linked to poorer communication and resident discomfort as well as mild negative health impacts on many staff, such as dehydration and adverse skin reactions. Hand sanitizer caused skin irritation. CONCUSIONS: Staff morale and working practices were generally good even though the working environment provided many new challenges that did not exist pre-pandemic.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , Pandemics/prevention & control , Infection Control , Health Facilities , Morale
10.
J Water Health ; 20(10): 1506-1516, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36308495

ABSTRACT

A small island community in Malaysia uses gravity-fed drinking water, and rejected water treatment by the authorities. This study was conducted to evaluate the community's risk perception towards their untreated water supply by interviewing one adult per household in four out of eight villages on the island. The survey asked questions on risk perception, socioeconomic characteristics, and perception of water supply quality. Water samples were collected from a total of 24 sampling locations across the four villages, and 91.7% of them were positive for E.coli. The study surveyed 218 households and found that 61.5% of respondents agreed to some degree that the water is safe to drink without treatment, while 67.9% of respondents disagreed to some degree that drinking tap water is associated with health risks, and 73.3% of respondents agreed to some degree that it is safe to drink directly from taps that are fitted with water filters. Using factor analysis to group the risk perception questions and multivariable GLM to explore relationships with underlying factors, the study found that older respondents, lower income level, positive water odour perception and positive water supply reliability perception lowers risk perception. The village of residence also significantly affects the risk perception level in the model.


Subject(s)
Drinking Water , Reproducibility of Results , Water Quality , Water Supply , Perception , Drinking
11.
Article in English | MEDLINE | ID: mdl-35742342

ABSTRACT

Syndromic surveillance data were used to estimate the direct impact of air pollution on healthcare-seeking behaviour, between 1 April 2012 and 31 December 2017. A difference-in-differences approach was used to control for spatial and temporal variations that were not due to air pollution and a meta-analysis was conducted to combine estimates from different pollution periods. Significant increases were found in general practitioner (GP) out-of-hours consultations, including a 98% increase (2-386, 95% confidence interval) in acute bronchitis and a 16% (3-30) increase in National Health Service (NHS) 111 calls for eye problems. However, the numbers involved are small; for instance, roughly one extra acute bronchitis consultation in a local authority on a day when air quality is poor. These results provide additional information for healthcare planners on the impacts of localised poor air quality. However, further work is required to identify the separate impact of different pollutants.


Subject(s)
Air Pollutants , Air Pollution , Bronchitis , Acute Disease , Air Pollution/adverse effects , Bronchitis/epidemiology , Humans , Patient Acceptance of Health Care , Sentinel Surveillance , State Medicine
12.
JMIR Public Health Surveill ; 8(8): e32347, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35486809

ABSTRACT

BACKGROUND: The COVID-19 pandemic has resulted in an unprecedented impact on the day-to-day lives of people, with several features potentially adversely affecting mental health. There is growing evidence of the size of the impact of COVID-19 on mental health, but much of this is from ongoing population surveys using validated mental health scores. OBJECTIVE: This study investigated the impact of the pandemic and control measures on mental health conditions presenting to a spectrum of national health care services monitored using real-time syndromic surveillance in England. METHODS: We conducted a retrospective observational descriptive study of mental health presentations (those calling the national medical helpline, National Health Service [NHS] 111; consulting general practitioners [GPs] in and out-of-hours; calling ambulance services; and attending emergency departments) from January 1, 2019, to September 30, 2020. Estimates for the impact of lockdown measures were provided using an interrupted time series analysis. RESULTS: Mental health presentations showed a marked decrease during the early stages of the pandemic. Postlockdown, attendances for mental health conditions reached higher than prepandemic levels across most systems-a rise of 10% compared to that expected for NHS 111 and 21% for GP out-of-hours service-while the number of consultations to GP in-hours service was 13% lower compared to the same time previous year. Increases were observed in calls to NHS 111 for sleep problems. CONCLUSIONS: These analyses showed marked changes in the health care attendances and prescribing for common mental health conditions across a spectrum of health care provision, with some of these changes persisting. The reasons for such changes are likely to be complex and multifactorial. The impact of the pandemic on mental health may not be fully understood for some time, and therefore, these syndromic indicators should continue to be monitored.


Subject(s)
COVID-19 , COVID-19/epidemiology , Communicable Disease Control , Delivery of Health Care , England/epidemiology , Humans , Mental Health , Pandemics , Retrospective Studies , State Medicine
13.
Euro Surveill ; 27(11)2022 03.
Article in English | MEDLINE | ID: mdl-35301981

ABSTRACT

When SARS-CoV-2 Omicron emerged in 2021, S gene target failure enabled differentiation between Omicron and the dominant Delta variant. In England, where S gene target surveillance (SGTS) was already established, this led to rapid identification (within ca 3 days of sample collection) of possible Omicron cases, alongside real-time surveillance and modelling of Omicron growth. SGTS was key to public health action (including case identification and incident management), and we share applied insights on how and when to use SGTS.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Membrane Glycoproteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
14.
Risk Anal ; 41(12): 2286-2292, 2021 12.
Article in English | MEDLINE | ID: mdl-34076284

ABSTRACT

The COVID-19 pandemic has disrupted economies and societies throughout the world since early 2020. Education is especially affected, with schools and universities widely closed for long periods. People under 25 years have the lowest risk of severe disease but their activities can be key to persistent ongoing community transmission. A challenge arose for how to provide education, including university level, without the activities of students increasing wider community SARS-CoV-2 infections. We used a Hazard Analysis of Critical Control Points (HACCP) framework to assess the risks associated with university student activity and recommend how to mitigate these risks. This tool appealed because it relies on multiagency collaboration and interdisciplinary expertise and yet is low cost, allowing rapid generation of evidence-based recommendations. We identified key critical control points associated with university student' activities, lifestyle, and interaction patterns both on-and-off campus. Unacceptable contact thresholds and the most up-to-date guidance were used to identify levels of risk for potential SARS-CoV-2 transmission, as well as recommendations based on existing research and emerging evidence for strategies that can reduce the risks of transmission. Employing the preventative measures we suggest can reduce the risks of SARS-CoV-2 transmission among and from university students. Reduction of infectious disease transmission in this demographic will reduce overall community transmission, lower demands on health services and reduce risk of harm to clinically vulnerable individuals while allowing vital education activity to continue. HACCP assessment proved a flexible tool for risk analysis in a specific setting in response to an emerging infectious disease threat. Systematic approaches to assessing hazards and risk critical control points (#HACCP) enable robust strategies for protecting students and staff in HE settings during #COVID19 pandemic.


Subject(s)
COVID-19/epidemiology , Hazard Analysis and Critical Control Points , Students , Universities , COVID-19/prevention & control , COVID-19/virology , Humans , Pandemics , SARS-CoV-2/isolation & purification
15.
Epidemiol Infect ; 149: e73, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33678199

ABSTRACT

The spatio-temporal dynamics of an outbreak provide important insights to help direct public health resources intended to control transmission. They also provide a focus for detailed epidemiological studies and allow the timing and impact of interventions to be assessed.A common approach is to aggregate case data to administrative regions. Whilst providing a good visual impression of change over space, this method masks spatial variation and assumes that disease risk is constant across space. Risk factors for COVID-19 (e.g. population density, deprivation and ethnicity) vary from place to place across England so it follows that risk will also vary spatially. Kernel density estimation compares the spatial distribution of cases relative to the underlying population, unfettered by arbitrary geographical boundaries, to produce a continuous estimate of spatially varying risk.Using test results from healthcare settings in England (Pillar 1 of the UK Government testing strategy) and freely available methods and software, we estimated the spatial and spatio-temporal risk of COVID-19 infection across England for the first 6 months of 2020. Widespread transmission was underway when partial lockdown measures were introduced on 23 March 2020 and the greatest risk erred towards large urban areas. The rapid growth phase of the outbreak coincided with multiple introductions to England from the European mainland. The spatio-temporal risk was highly labile throughout.In terms of controlling transmission, the most important practical application of our results is the accurate identification of areas within regions that may require tailored intervention strategies. We recommend that this approach is absorbed into routine surveillance outputs in England. Further risk characterisation using widespread community testing (Pillar 2) data is needed as is the increased use of predictive spatial models at fine spatial scales.


Subject(s)
COVID-19/diagnosis , Time Factors , COVID-19/classification , COVID-19/epidemiology , England/epidemiology , Humans , Population Surveillance/methods , Risk Evaluation and Mitigation , Risk Factors , Spatio-Temporal Analysis , Urban Population/statistics & numerical data
16.
Article in English | MEDLINE | ID: mdl-35082977

ABSTRACT

Surveillance systems need to be evaluated to understand what the system can or cannot detect. The measures commonly used to quantify detection capabilities are sensitivity, positive predictive value and timeliness. However, the practical application of these measures to multi-purpose syndromic surveillance services is complex. Specifically, it is very difficult to link definitive lists of what the service is intended to detect and what was detected. First, we discuss issues arising from a multi-purpose system, which is designed to detect a wide range of health threats, and where individual indicators, e.g. 'fever', are also multi-purpose. Secondly, we discuss different methods of defining what can be detected, including historical events and simulations. Finally, we consider the additional complexity of evaluating a service which incorporates human decision-making alongside an automated detection algorithm. Understanding the complexities involved in evaluating multi-purpose systems helps design appropriate methods to describe their detection capabilities.

17.
Sci Total Environ ; 765: 142787, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33246727

ABSTRACT

Many types of bioresource materials are beneficially recycled in agriculture for soil improvement and as alternative bedding materials for livestock, but they also potentially transfer contaminants into plant and animal foods. Representative types of industrial and municipal bioresources were selected to assess the extent of organic chemical contamination, including: (i) land applied materials: treated sewage sludge (biosolids), meat and bone meal ash (MBMA), poultry litter ash (PLA), paper sludge ash (PSA) and compost-like-output (CLO), and (ii) bedding materials: recycled waste wood (RWW), dried paper sludge (DPS), paper sludge ash (PSA) and shredded cardboard. The materials generally contained lower concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (PCBs) relative to earlier reports, indicating the decline in environmental emissions of these established contaminants. However, concentrations of polycyclic aromatic hydrocarbons (PAHs) remain elevated in biosolids samples from urban catchments. Polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) were present in larger amounts in biosolids and CLO compared to their chlorinated counterparts and hence are of potentially greater significance in contemporary materials. The presence of non-ortho-polychlorinated biphenyls (PCBs) in DPS was probably due to non-legacy sources of PCBs in paper production. Flame retardent chemicals were one of the most significant and extensive groups of contaminants found in the bioresource materials. Decabromodiphenylether (deca-BDE) was the most abundant polybrominated diphenyl ether (PBDE) and may explain the formation and high concentrations of PBDD/Fs detected. Emerging flame retardant compounds, including: decabromodiphenylethane (DBDPE) and organophosphate flame retardants (OPFRs), were also detected in several of the materials. The profile of perfluoroalkyl substances (PFAS) depended on the type of waste category; perfluoroundecanoic acid (PFUnDA) was the most significant PFAS for DPS, whereas perfluorooctane sulfonate (PFOS) was dominant in biosolids and CLO. The concentrations of polychlorinated alkanes (PCAs) and di-2-ethylhexyl phthalate (DEHP) were generally much larger than the other contaminants measured, indicating that there are major anthropogenic sources of these potentially hazardous chemicals entering the environment. The study results suggest that continued vigilance is required to control emissions and sources of these contaminants to support the beneficial use of secondary bioresource materials.


Subject(s)
Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Agriculture , Animals , Dibenzofurans , Environmental Monitoring , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis , United Kingdom
18.
Euro Surveill ; 25(49)2020 12.
Article in English | MEDLINE | ID: mdl-33303066

ABSTRACT

BackgroundEvidence for face-mask wearing in the community to protect against respiratory disease is unclear.AimTo assess effectiveness of wearing face masks in the community to prevent respiratory disease, and recommend improvements to this evidence base.MethodsWe systematically searched Scopus, Embase and MEDLINE for studies evaluating respiratory disease incidence after face-mask wearing (or not). Narrative synthesis and random-effects meta-analysis of attack rates for primary and secondary prevention were performed, subgrouped by design, setting, face barrier type, and who wore the mask. Preferred outcome was influenza-like illness. Grading of Recommendations, Assessment, Development and Evaluations (GRADE) quality assessment was undertaken and evidence base deficits described.Results33 studies (12 randomised control trials (RCTs)) were included. Mask wearing reduced primary infection by 6% (odds ratio (OR): 0.94; 95% CI: 0.75-1.19 for RCTs) to 61% (OR: 0.85; 95% CI: 0.32-2.27; OR: 0.39; 95% CI: 0.18-0.84 and OR: 0.61; 95% CI: 0.45-0.85 for cohort, case-control and cross-sectional studies respectively). RCTs suggested lowest secondary attack rates when both well and ill household members wore masks (OR: 0.81; 95% CI: 0.48-1.37). While RCTs might underestimate effects due to poor compliance and controls wearing masks, observational studies likely overestimate effects, as mask wearing might be associated with other risk-averse behaviours. GRADE was low or very low quality.ConclusionWearing face masks may reduce primary respiratory infection risk, probably by 6-15%. It is important to balance evidence from RCTs and observational studies when their conclusions widely differ and both are at risk of significant bias. COVID-19-specific studies are required.


Subject(s)
COVID-19/prevention & control , Eye Protective Devices , Influenza, Human/prevention & control , Masks , Picornaviridae Infections/prevention & control , Respiratory Tract Infections/prevention & control , Tuberculosis/prevention & control , COVID-19/transmission , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Humans , Influenza, Human/transmission , Picornaviridae Infections/transmission , Respiratory Protective Devices , Respiratory Tract Infections/transmission , SARS-CoV-2 , Tuberculosis/transmission
19.
BMJ Open ; 10(11): e038356, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33158821

ABSTRACT

OBJECTIVE: This study will analyse respiratory contacts to three healthcare services that capture more of the community disease burden than acute data sources, such as hospitalisations. The objective is to explore associations between contacts to these services and the patient's age, gender and deprivation. Results will be compared between healthcare services, and with non-respiratory contacts to explore how contacts differ by service and illness. It is crucial to investigate the sociodemographic patterns in healthcare-seeking behaviour to enable targeted public health interventions. DESIGN: Ecological study. SETTING: Surveillance of respiratory contacts to three healthcare services in England: telehealth helpline (NHS111); general practitioner in-hours (GPIH); and general practitioner out of hours unscheduled care (GPOOH). PARTICIPANTS: 13 million respiratory contacts to NHS111, GPIH and GPOOH. OUTCOME MEASURES: Respiratory contacts to NHS111, GPIH and GPOOH, and non-respiratory contacts to NHS111 and GPOOH. RESULTS: More respiratory contacts were observed for females, with 1.59, 1.73, and 1.95 times the rate of contacts to NHS111, GPOOH and GPIH, respectively. When compared with 15-44 year olds, there were 37.32, 18.66 and 6.21 times the rate of respiratory contacts to NHS111, GPOOH and GPIH in children <1 year. There were 1.75 and 2.70 times the rate of respiratory contacts in the most deprived areas compared with the least deprived to NHS111 and GPOOH. Elevated respiratory contacts were observed for males <5 years compared with females <5 years. Healthcare-seeking behaviours between respiratory and non-respiratory contacts were similar. CONCLUSION: When contacts to services that capture more of the disease burden are explored, the demographic patterns are similar to those described in the literature for acute systems. Comparable results were observed between respiratory and non-respiratory contacts suggesting that when a wider spectrum of disease is explored, sociodemographic factors may be the strongest influencers of healthcare-seeking behaviour.


Subject(s)
Delivery of Health Care , Patient Acceptance of Health Care , Adolescent , Adult , Demography , England/epidemiology , Female , Humans , Male , Socioeconomic Factors , Young Adult
20.
Health Place ; 63: 102355, 2020 05.
Article in English | MEDLINE | ID: mdl-32543438

ABSTRACT

INTRODUCTION: There is some evidence that exam results are worse when students are acutely exposed to air pollution. Studies investigating the association between air pollution and academic attainment have been constrained by small sample sizes. METHODS: Cross sectional educational attainment data (2009-2015) from students aged 15-16 years in Cardiff, Wales were linked to primary health care data, modelled air pollution and measured pollen data, and analysed using multilevel linear regression models. Annual cohort, school and individual level confounders were adjusted for in single and multi-pollutant/pollen models. We stratified by treatment of asthma and/or Seasonal Allergic Rhinitis (SAR). RESULTS: A unit (10µg/m3) increase of short-term exposure to NO2 was associated with 0.044 (95% CI: -0.079, -0.008) reduction of standardised Capped Point Score (CPS) after adjusting for individual and household risk factors for 18,241 students. This association remained statistically significant after controlling for other pollutants and pollen. There was no association of PM2.5, O3, or Pollen with standardised CPS remaining after adjustment. We found no evidence that treatment for asthma or SAR modified the observed NO2 effect on educational attainment. CONCLUSION: Our study showed that short-term exposure to traffic-related air pollution, specifically NO2, was associated with detrimental educational attainment for students aged 15-16. Longitudinal investigations in different settings are required to confirm this possible impact and further work may uncover the long-term economic implications, and degree to which impacts are cumulative and permanent.


Subject(s)
Academic Success , Air Pollution/adverse effects , Asthma/chemically induced , Information Storage and Retrieval , Students/statistics & numerical data , Travel , Adolescent , Cohort Studies , Cross-Sectional Studies , Female , Humans , Male , Risk Factors , Vehicle Emissions/analysis , Wales
SELECTION OF CITATIONS
SEARCH DETAIL
...