Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroepidemiology ; : 1-23, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531341

ABSTRACT

BACKGROUND: The gut microbiota (GM) of the human body comprises several species of microorganisms. This microorganism plays a significant role in the physiological and pathophysiological processes of various human diseases. METHODS: The literature review includes studies that describe causative factors that influence GM. The GM is sensitive to various factors like circadian rhythms, environmental agents, physical activity, nutrition, and hygiene that together impact the functioning and composition of the gut microbiome. This affects the health of the host, including the psycho-neural aspects, due to the interconnectivity between the brain and the gut. Hence, this paper examines the relationship of GM with neurodegenerative disorders in the context of these aforesaid factors. CONCLUSION: Future studies that identify the regulatory pathways associated with gut microbes can provide a causal link between brain degeneration and the gut at a molecular level. Together, this review could be helpful in designing preventive and treatment strategies aimed at GM, so that neurodegenerative diseases can be treated.

2.
Heliyon ; 9(7): e18287, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37519724

ABSTRACT

Introduction: Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder that progressively leads to motor neuron degeneration at the neuromuscular junctions, resulting in paralysis in the patients. The clinical diagnosis of ALS is time taking and further delays the therapeutics that can be helpful if the disease is diagnosed at an early stage. Changes in plasma composition can be reflected upon CSF composition and hence, can be used to study the diagnosis and prognosis markers for the disease. Aim: To develop a simple model system using motor neuron like cell line after plasma induction. Method: Neuroblastoma × Spinal Cord hybridoma cell line (NSC34) was cultured under appropriate conditions. 10% ALS patients' plasma was added to the media, and cells were conditioned for 12 h. Cell survival analysis and differential gene expression of a panel of molecules (published previously, VEGF, VEGFR2, ANG, OPTN, TDP43, and MCP-1) were done. Results: ALS patients' plasma impacted the life of the cells and reduced survival to nearly 50% after induction. VEGF was found to be significantly down-regulated in the cells, which can be explained as a reason for reduced cell survival. Conclusion: ALS plasma altered the expression of an essential neuroprotective and growth factor VEGF in NSC34 cells leading to reduced viability.

SELECTION OF CITATIONS
SEARCH DETAIL
...