Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1026168, 2023.
Article in English | MEDLINE | ID: mdl-36967761

ABSTRACT

Objective: Bromocriptine treatment has been shown to reduce menstrual bleeding and pain in women with adenomyosis in a pilot clinical trial. The underlying mechanism contributing to the treatment effect is however unknown. The purpose of this study was to explore the effect of bromocriptine on the proliferation and migration properties of the endometrium in women with adenomyosis, by assessing cellular and molecular changes after six months of vaginal bromocriptine treatment. Methods: Endometrial specimens were collected during the proliferative phase from women with adenomyosis (n=6) before (baseline) and after six months of treatment with vaginal bromocriptine. Immunohistochemistry was used to determine changes in the protein expression of Ki67 in the endometrium of women with adenomyosis. Primary endometrial stromal cells isolated at baseline were expanded in vitro and exposed to different doses of bromocriptine to determine the optimal half-maximum inhibitory concentration (IC50) using CellTiter-Blue® Cell Viability Assay. Cell proliferation was assessed by bromodeoxyuridine ELISA assay and Ki67 gene expression was checked by real-time PCR. The migratory ability of endometrial stromal cells was determined by wound healing and transwell migration assays. Small RNA sequencing was applied on tissues collected from women with adenomyosis before and after bromocriptine treatment to identify differentially expressed microRNAs (miRNAs) after bromocriptine treatment. Bioinformatic methods were used for target gene prediction and the identification of biological pathways by enrichment procedures. Results: Vaginal bromocriptine treatment reduced the Ki67 protein expression in the endometrium of women with adenomyosis and did not change the prolactin mRNA expression and protein concentration of prolactin in endometrial tissues. Bromocriptine significantly inhibited the proliferative and migrative abilities of endometrial stromal cells derived from women with adenomyosis in vitro. Moreover, small RNA sequencing revealed 27 differentially expressed miRNAs between the endometrium of women with adenomyosis before and after six months of vaginal bromocriptine treatment. KEGG pathway analysis on targeted genes of 27 miRNAs showed that several signaling pathways associated with cell proliferation and apoptosis were enriched after bromocriptine treatment. Conclusion: Bromocriptine treatment exhibits an anti-proliferative effect in the endometrium of women with adenomyosis in vivo and in vitro. Bromocriptine might inhibit the proliferation of endometrial tissue in adenomyosis in part through the regulation of dysregulated microRNAs and proliferation-associated signaling pathways.


Subject(s)
Adenomyosis , MicroRNAs , Humans , Female , Adenomyosis/drug therapy , Bromocriptine/pharmacology , Bromocriptine/therapeutic use , Ki-67 Antigen/metabolism , Prolactin/metabolism , Endometrium/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation
2.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36835533

ABSTRACT

Recent studies suggest estradiol (E2)/natural progesterone (P) confers less breast cancer risk compared with conjugated equine estrogens (CEE)/synthetic progestogens. We investigate if differences in the regulation of breast cancer-related gene expression could provide some explanation. This study is a subset of a monocentric, 2-way, open observer-blinded, phase 4 randomized controlled trial on healthy postmenopausal women with climacteric symptoms (ClinicalTrials.gov; EUCTR-2005/001016-51). Study medication was two 28-day cycles of sequential hormone treatment with oral 0.625 mg CEE and 5 mg of oral medroxyprogesterone acetate (MPA) or 1.5 mg E2 as percutaneous gel/day with the addition of 200 mg oral micronized P. MPA and P were added days 15-28/cycle. Material from two core-needle breast biopsies in 15 women in each group was subject to quantitative PCR (Q-PCR). The primary endpoint was a change in breast carcinoma development gene expression. In the first eight consecutive women, RNA was extracted at baseline and after two months of treatment and subjected to microarray for 28856 genes and Ingenuity Pathways Analysis (IPA) to identify risk factor genes. Microarray analysis showed 3272 genes regulated with a fold-change of >±1.4. IPA showed 225 genes belonging to mammary-tumor development function: 198 for CEE/MPA vs. 34 for E2/P. Sixteen genes involved in mammary tumor inclination were subject to Q-PCR, inclining the CEE/MPA group towards an increased risk for breast carcinoma compared to the E2/P group at a very high significance level (p = 3.1 × 10-8, z-score 1.94). The combination of E2/P affected breast cancer-related genes much less than CEE/MPA.


Subject(s)
Medroxyprogesterone Acetate , Neoplasms , Humans , Female , Medroxyprogesterone Acetate/therapeutic use , Progesterone/adverse effects , Estrogens, Conjugated (USP)/pharmacology , Estradiol , Postmenopause , Estrogen Replacement Therapy/adverse effects , Risk Factors , Gene Expression , Neoplasms/drug therapy
3.
Hum Reprod ; 35(10): 2280-2293, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32897364

ABSTRACT

STUDY QUESTION: What is the physiological role of transforming growth factor-beta (TGF-ß1) and syndecans (SDC1, SDC4) in endometriotic cells in women with endometriosis? SUMMARY ANSWER: We observed an abnormal, pro-invasive phenotype in a subgroup of samples with ovarian endometriosis, which was reversed by combining gene silencing of SDC1 with the TGF-ß1 treatment. WHAT IS KNOWN ALREADY: Women with endometriosis express high levels of TGF-ß1 and the proteoglycan co-receptors SDC1 and SDC4 within endometriotic cysts. However, how SDC1 and SDC4 expression is regulated by TGF-ß1 and the physiological significance of the high expression in endometriotic cysts remains unknown as does the potential role in disease severity. STUDY DESIGN, SIZE, DURATION: We utilized a pre-validated panel of stem- and cancer cell-associated markers on endometriotic tissue (n = 15) to stratify subgroups of women with endometriosis. Furthermore, CD90+CD73+CD105+ (SC+) endometriotic stromal cells from these patient subgroups were explored for their invasive behaviour in vitro by transient gene inhibition of SDC1 or SDC4, both in the presence or absence of TGF-ß1 treatment. PARTICIPANTS/MATERIALS, SETTING, METHODS: Endometriotic cyst biopsies (n = 15) were obtained from women diagnosed with ovarian endometriosis (ASRM Stage III-IV). Gene expression variability was assessed on tissue samples by applying gene clustering tools for the dataset generated from the pre-validated panel of markers. Three-dimensional (3D) spheroids from endometriotic SC+ were treated in vitro with increasing doses of TGF-ß1 or the TGFBRI/II inhibitor Ly2109761 and assessed for SDC1, SDC4 expression and in vitro 3D-spheroid invasion. Transcriptomic signatures from the invaded 3D spheroids were evaluated upon combining transient gene silencing of SDC1 or SDC4, both in presence or absence of TGF-ß1 treatment. Furthermore, nanoscale changes on the surface of endometriotic cells were analysed after treatment with TGF-ß1 or TGFBRI/II inhibitor using atomic force microscopy. MAIN RESULTS AND THE ROLE OF CHANCE: Gene clustering analysis revealed that endometriotic tissues displayed variability in their gene expression patterns; a small subgroup of samples (2/15, Endo-hi) exhibited high levels of SDC1, SDC4 and molecules involved in TGF-ß signalling (TGF-ß1, ESR1, CTNNB1, SNAI1, BMI1). The remaining endometriotic samples (Endo-lo) showed a uniform, low gene expression profile. Three-dimensional spheroids derived from Endo-hi SC+ but not Endo-lo SC+ samples showed an aberrant expression of SDC1 and exhibited enhanced 3D-spheroid invasion in vitro, upon rhTGF-ß1 treatment. However, this abnormal, pro-invasive response of Endo-hi SC+ was reversed upon gene silencing of SDC1 with the TGF-ß1 treatment. Interestingly, transcriptomic signatures of 3D spheroids silenced for SDC1 and consecutively treated with TGF-ß1, showed a down-regulation of cancer-associated pathways such as WNT and GPCR signalling. LARGE SCALE DATA: Transcriptomic data were deposited in NCBI's Gene Expression Omnibus (GEO) and could be retrieved using GEO series accession number: GSE135122. LIMITATIONS, REASONS FOR CAUTION: It is estimated that about 2.5% of endometriosis patients have a potential risk for developing ovarian cancer later in life. It is possible that the pro-oncogenic molecular changes observed in this cohort of endometriotic samples may not correlate with clinical occurrence of ovarian cancer later in life, thus a validation will be required. WIDER IMPLICATIONS OF THE FINDINGS: This study emphasizes the importance of interactions between syndecans and TGF-ß1 in the pathophysiology of endometriosis. We believe that this knowledge could be important in order to better understand endometriosis-associated complications such as ovarian cancer or infertility. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by Cancerfonden (CAN 2016/696), Radiumhemmets Forskningsfonder (Project no. 154143 and 184033), EU MSCA-RISE-2015 project MOMENDO (691058), Estonian Ministry of Education and Research (IUT34-16), Enterprise Estonia (EU48695) and Karolinska Institute. Authors do not have any conflict of interest.


Subject(s)
Endometriosis , Ovarian Neoplasms , Endometriosis/genetics , Endometrium , Estonia , Female , Humans , Stromal Cells , Syndecan-1/genetics
4.
Hum Reprod ; 33(10): 1924-1938, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30020448

ABSTRACT

STUDY QUESTION: Is there molecular evidence for a link between endometriosis and endometriosis-associated ovarian cancers (EAOC)? STUDY ANSWER: We identified aberrant gene expression signatures associated with malignant transformation in a small subgroup of women with ovarian endometriosis. WHAT IS KNOWN ALREADY: Epidemiological studies have shown an increased risk of EAOC in women with ovarian endometriosis. However, the cellular and molecular changes leading to EAOC are largely unexplored. STUDY DESIGN, SIZE, DURATION: CD73+CD90+CD105+ multipotent stem cells/progenitors (SC cohort) were isolated from endometrium (n = 18) and endometrioma (n = 11) of endometriosis patients as well as from the endometrium of healthy women (n = 14). Extensive phenotypic and functional analyses were performed in vitro on expanded multipotent stem cells/progenitors to confirm their altered characteristics. Aberrant gene signatures were also validated in paired-endometrium and -endometrioma tissue samples from another cohort (Tissue cohort, n = 19) of endometriosis patients. PARTICIPANTS/MATERIALS, SETTINGS, METHODS: Paired-endometrial and -endometriotic biopsies were obtained from women with endometriosis (ASRM stage III-IV) undergoing laparoscopic surgery. Control endometria were obtained from healthy volunteers. Isolated CD73+CD90+CD105+ SC were evaluated for the presence of known endometrial surface markers, colony forming efficiency, multi-lineage differentiation, cell cycle distribution and 3D-spheroid formation capacity. Targeted RT-PCR arrays, along with hierarchical and multivariate clustering tools, were used to determine both intergroup and intragroup gene expression variability for stem cell and cancer-associated markers, in both SC+ and tissue cohorts. MAIN RESULTS AND THE ROLE OF CHANCE: Isolated and expanded SC+ from both control and patient groups showed significantly higher surface expression of W5C5+, clonal expansion and 3D-spheroid formation capacity (P < 0.05) compared with SC-. The SC+ cells also undergo mesenchymal lineage differentiation, unlike SC-. Gene expression from paired-endometriosis samples showed significant downregulation of PTEN, ARID1A and TNFα (P < 0.05) in endometrioma compared with paired-endometrium SC+ samples. Hierarchical and multivariate clustering from both SC+ and tissue cohorts together identified 4 out of 30 endometrioma samples with aberrant expression of stem cell and cancer-associated genes, such as KIT, HIF2α and E-cadherin, altered expression ratio of ER-ß/ER-α and downregulation of tumour suppressor genes (PTEN and ARID1A). Thus, we speculate that above changes may be potentially relevant to the development of EAOC. LARGE-SCALE DATA: N/A. LIMITATIONS, REASON FOR CAUTION: As the reported frequency of EAOC is very low, we did not have access to those samples in our study. Moreover, by adopting a targeted gene array approach, we might have missed several other potentially-relevant genes associated with EAOC pathogenesis. The above panel of markers should be further validated in archived tissue samples from women with endometriosis who later in life developed EAOC. WIDER IMPLICATIONS OF THE FINDINGS: Knowledge gained from this study, with further confirmation on EAOC cases, may help in developing screening methods to identify women with increased risk of EAOC. STUDY FUNDING/COMPETING INTEREST(S): The study is funded by the Swedish Research Council (2012-2844), a joint grant from Stockholm County and Karolinska Institutet (ALF), RGD network at Karolinska Institutet, Karolinska Institutet for doctoral education (KID), Estonian Ministry of Education and Research (IUT34-16), Enterprise Estonia (EU48695), Horizon 2020 innovation program (WIDENLIFE, 692065), European Union's FP7 Marie Curie Industry-Academia Partnerships and Pathways funding (IAPP, SARM, EU324509) and MSCA-RISE-2015 project MOMENDO (691058). All authors have no competing interest.


Subject(s)
Down-Regulation , Endometriosis/genetics , Endometrium/metabolism , Ovarian Neoplasms/genetics , Adult , Biomarkers, Tumor , Case-Control Studies , Cell Cycle , Endometriosis/complications , Endometrium/pathology , Female , Humans , Ovarian Neoplasms/etiology , Receptors, Peptide/genetics , Receptors, Transforming Growth Factor beta/genetics , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/metabolism
5.
Fertil Steril ; 91(4 Suppl): 1420-3, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18710702

ABSTRACT

Levonorgestrel (1.5 mg) is commonly used for emergency contraception to prevent an unwanted pregnancy after an unprotected intercourse. We found that postovulatory administration of 1.5 mg of levonorgestrel to women with a subsequent or existing early pregnancy did not affect the immunohistochemical expressions of estrogen receptors (ER(alpha), ER(beta)), P receptors (PR(B), PR(A+B)), androgen receptor (AR), or proliferation index Ki67 in the first-trimester decidua and chorionic villi.


Subject(s)
Chorionic Villi/metabolism , Contraception, Postcoital/methods , Decidua/metabolism , Ki-67 Antigen/metabolism , Levonorgestrel/pharmacology , Receptors, Androgen/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Adult , Cell Proliferation , Contraceptive Agents, Female/pharmacology , Decidua/cytology , Estrogen Receptor alpha/drug effects , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/drug effects , Estrogen Receptor beta/metabolism , Female , Humans , Ki-67 Antigen/drug effects , Pregnancy , Pregnancy Trimester, First/metabolism , Receptors, Androgen/drug effects , Receptors, Estrogen/drug effects , Receptors, Progesterone/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...