Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Protoplasma ; 253(3): 821-834, 2016 May.
Article in English | MEDLINE | ID: mdl-26103934

ABSTRACT

Vacuoles of different types frequently coexist in the same plant cell, but the duality of the tannin/tannin-less vacuoles observed in Mimosa pudica L. is rare. In this plant, which is characterized by highly motile leaves, the development and original features of the double vacuolar compartment were detailed in primary pulvini from the young to the mature leaf stage. In young pulvini, the differentiation of tannin vacuoles first occurred in the epidermis and progressively spread toward the inner cortex. In motor cells of nonmotile pulvini, tannin deposits first lined the membranes of small vacuole profiles and then formed opaque clusters that joined together to form a large tannin vacuole (TV), the proportion of which in the cell was approximately 45%. At this stage, transparent vacuole profiles were rare and small, but as the parenchyma cells enlarged, these profiles coalesced to form a transparent vacuole with a convexity toward the larger-sized tannin vacuole. When leaf motility began to occur, the two vacuole types reached the same relative proportion (approximately 30%). Finally, in mature cells displaying maximum motility, the large transparent colloidal vacuole (CV) showed a relative proportion increasing to approximately 50%. At this stage, the proportion of the tannin vacuole, occurring in the vicinity of the nucleus, decreased to approximately 10%. The presence of the condensed type of tannins (proanthocyanidins) was proven by detecting their fluorescence under UV light and by specific chemical staining. This dual vacuolar profile was also observed in nonmotile parts of M. pudica (e.g., the petiole and the stem). Additional observations of leaflet pulvini showing more or less rapid movements showed that this double vacuolar structure was present in certain plants (Mimosa spegazzinii and Desmodium gyrans), but absent in others (Albizzia julibrissin, Biophytum sensitivum, and Cassia fasciculata). Taken together, these observations strongly suggest that a direct correlation cannot be found between the presence of a tannin vacuole and the osmoregulated motility of pulvini.


Subject(s)
Fabaceae/cytology , Plant Cells/metabolism , Plant Leaves/cytology , Tannins/metabolism , Vacuoles/metabolism , Fabaceae/metabolism , Fluorescence , Microscopy, Electron, Transmission , Mimosa/cytology , Mimosa/metabolism , Plant Leaves/metabolism , Proanthocyanidins/metabolism
2.
J Exp Bot ; 63(3): 1495-510, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22140241

ABSTRACT

Despite the fact that the precise physiological function of ASRs [abscisic acid (ABA), stress, ripening] remains unknown, they have been suggested to play a dual role in the plant response to environmental cues, as highly hydrophilic proteins for direct protection, as well as transcription factors involved in the regulation of gene expression. To investigate further the biological positioning of grape ASR in the hormonal and metabolic signal network, three promoters corresponding to its cDNA were isolated and submited to a detailed in silico and functional analysis. The results obtained provided evidence for the allelic polymorphism of the grape ASR gene, the organ-preferential expression conferred on the GUS reporter gene, and the specific phloem tissue localization revealed by in situ hybridization. The study of glucose and ABA signalling in its transcriptional control, by transfection of grape protoplasts using the dual luciferase system, revealed the complexity of ASR gene expression regulation. A model was proposed allowing a discussion of the place of ASR in the fine tuning of hormonal and metabolic signalling involved in the integration of environmental cues by the plant organism.


Subject(s)
Abscisic Acid/pharmacology , Glucose/pharmacology , Plant Proteins/metabolism , Vitis/drug effects , Vitis/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Vitis/genetics
3.
FEBS Lett ; 582(23-24): 3281-7, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18804467

ABSTRACT

ASR proteins (abscissic acid, stress, ripening induced) are involved in plant responses to developmental and environmental signals but their biological functions remain to be elucidated. Grape ASR gene (VvMSA) encodes a new transcription factor regulating the expression of a glucose transporter. Here, we provide evidence for some polymorphism of grape ASRs and their identification as chromosomal non-histone proteins. By the yeast two-hybrid approach, a protein partner of VvMSA is isolated and characterized as an APETALA2 domain transcription factor. Interaction of the two proteins is further demonstrated by the BiFC approach and the exclusive nuclear localization of the heterodimer is visualized.


Subject(s)
Cell Nucleus/metabolism , Nuclear Proteins/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Vitis/metabolism , Cell Nucleus/genetics , Dimerization , Nuclear Proteins/genetics , Plant Proteins/genetics , Polymorphism, Genetic , Protein Structure, Tertiary , Transcription Factors/genetics , Two-Hybrid System Techniques , Vitis/genetics
4.
Funct Plant Biol ; 35(5): 394-402, 2008 Jul.
Article in English | MEDLINE | ID: mdl-32688796

ABSTRACT

Grapevine (Vitis vinifera L.) embryos have an early developmental pattern which differs from the one observed in model angiosperms such as Arabidopsis, in that the plane of divisions show variations from one individual to another. Furthermore, the protoderm (the first tissue to differentiate) does not form in one step but rather, gradually with time during globule formation. In Arabidopsis, expression pattern of a particular lipid transfer protein (LTP) isoform, AtLTP1, appears to be related to protoderm establishment, and is considered as a molecular marker of its differentiation. To investigate whether a similar role for LTPs in the development of grapevine embryos, we investigated the expression pattern of VvLTP1, a Vitis homologue of AtLTP1, in somatic embryo development. Expression of the GUS reporter gene under the control of the VvLTP1 promoter demonstrated that this LTP isoform is a marker of protoderm formation, and confirmed that this tissue forms sequentially over time. Ectopic expression of VvLTP1 under the control of the 35S promoter led to grossly misshapen embryos, which failed to acquire bilateral symmetry and displayed an abnormal epidermal layer. These results indicate that a correct spatial or temporal expression, or both, of this gene is essential for grapevine embryo development.

SELECTION OF CITATIONS
SEARCH DETAIL
...