Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 17(10): 2911-2922, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36174018

ABSTRACT

Using the regioselective cyanobenzothiazole condensation reaction with an N-terminal cysteine and the chloroacetamide reaction with an internal cysteine, a phage-displayed macrocyclic 12-mer peptide library was constructed and subsequently validated. Using this library in combination with iterative selections against two epitopes from the receptor binding domain (RBD) of the novel severe acute respiratory syndrome virus 2 (SARS-CoV-2) Spike protein, macrocyclic peptides that strongly inhibit the interaction between the Spike RBD and angiotensin-converting enzyme 2 (ACE2), the human host receptor of SARS-CoV-2, were identified. The two epitopes were used instead of the Spike RBD to avoid selection of nonproductive macrocyclic peptides that bind RBD but do not directly inhibit its interactions with ACE2. Antiviral tests against SARS-CoV-2 showed that one macrocyclic peptide is highly potent against viral reproduction in Vero E6 cells with an EC50 value of 3.1 µM. The AlphaLISA-detected IC50 value for this macrocyclic peptide was 0.3 µM. The current study demonstrates that two kinetically controlled reactions toward N-terminal and internal cysteines, respectively, are highly effective in the construction of phage-displayed macrocyclic peptides, and the selection based on the SARS-CoV-2 Spike epitopes is a promising methodology in the identification of peptidyl antivirals.


Subject(s)
Bacteriophages , COVID-19 Drug Treatment , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Epitopes/metabolism , Peptide Library , Cysteine/metabolism , Protein Binding , Peptides/pharmacology , Peptides/metabolism , Antiviral Agents/pharmacology , Bacteriophages/metabolism
3.
ChemMedChem ; 17(1): e202100455, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34423563

ABSTRACT

As the pathogen of COVID-19, SARS-CoV-2 encodes two essential cysteine proteases that process the pathogen's two large polypeptide products pp1a and pp1ab in the human cell host to form 15 functionally important, mature nonstructural proteins. One of the two enzymes is papain-like protease or PLPro . It possesses deubiquitination and deISGylation activities that suppress host innate immune responses toward SARS-CoV-2 infection. To repurpose drugs for PLPro , we experimentally screened libraries of 33 deubiquitinase and 37 cysteine protease inhibitors on their inhibition of PLPro . Our results showed that 15 deubiquitinase and 1 cysteine protease inhibitors exhibit strong inhibition of PLPro at 200 µM. More comprehensive characterizations revealed seven inhibitors GRL0617, SJB2-043, TCID, DUB-IN-1, DUB-IN-3, PR-619, and S130 with an IC50 value below 40 µM and four inhibitors GRL0617, SJB2-043, TCID, and PR-619 with an IC50 value below 10 µM. Among four inhibitors with an IC50 value below 10 µM, SJB2-043 is the most unique in that it does not fully inhibit PLPro but has a noteworthy IC50 value of 0.56 µM. SJB2-043 likely binds to an allosteric site of PLPro to convene its inhibition effect, which needs to be further investigated. As a pilot study, the current work indicates that COVID-19 drug repurposing by targeting PLPro holds promise, but in-depth analysis of repurposed drugs is necessary to avoid omitting critical allosteric inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Drug Repositioning , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Cysteine Proteinase Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...