Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Org Chem ; 80(21): 11021-30, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26444498

ABSTRACT

An effective Friedel-Crafts alkylation reaction of electron-rich aromatics with N-vinylamides, induced by electrochemically in situ-generated TBPA radical cation, has been developed; the resulting adducts are produced in good to excellent yields. In the "ex-cell" type electrolysis, TBPA is transformed to its oxidized form in situ and subsequently employed as an electron transfer reagent to initiate a cationic chain reaction. An easily recoverable and reusable polymeric ionic liquid-carbon black (PIL-CB) composite was also utilized as a supporting electrolyte for the electrochemical generation of TBPA cation radical, without sacrificing efficiency or stability after four electrolyses. Cyclic voltammetry analysis and the results of control experiments demonstrate that the reaction of electron-rich aromatics and N-vinylamides occurs via a cationic chain reaction, which takes place though an oxidative activation of a C-H bond of electron-rich aromatics instead of oxidation of the N-vinylamide as previously assumed.

2.
Org Lett ; 17(4): 986-9, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25654310

ABSTRACT

Efficient electrocatalytic aziridination of alkenes has been achieved for the first time. A structurally broad range of aziridines was easily accessed using an undivided cell operated at constant current and mediated by a catalytic quantity of n-Bu4NI. The electrocatalytic reaction also proceeded in the absence of additional conducting salt. The aziridination is proposed to follow a radical mechanism.

3.
J Org Chem ; 78(5): 2104-10, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23186059

ABSTRACT

A series of triarylimidazoles was synthesized and characterized electrochemically. The synthetic route is general, providing a pathway to 30 redox mediators that exhibit a > 700 mV range of accessible potentials. Most of the triarylimidazoles display three oxidation peaks where the first redox couple is quasi-reversible. The electronic character of the substituents affects the oxidation potential. This is exemplified by a linear correlation between the first oxidation potential and the sum of the Hammett σ(+) substituent constants, as well as with a series of calculated ionization potentials. We close by putting forward a rule of thumb stating that for a given mediator, the upper limit of accessible potentials can be extended by at least 500 mV beyond the largest recorded value. A rationale, the conditions under which the rule is likely to apply, and an example are provided.

4.
Org Lett ; 14(5): 1314-7, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22339088

ABSTRACT

A new class of metal-free, easy to synthesize redox catalysts based on a triarylimidazole framework is described. With those synthesized thus far, one can access a potential range of ca. 410 mV. They proved to be useful mediators for the activation of benzylic C-H bonds under mild conditions.


Subject(s)
Imidazoles/chemistry , Catalysis , Electrochemical Techniques , Molecular Structure , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...