Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38626772

ABSTRACT

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Subject(s)
Frontotemporal Dementia , Neurons , Osteopontin , tau Proteins , Osteopontin/metabolism , Osteopontin/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Animals , tau Proteins/metabolism , Mice , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Microglia/metabolism , Microglia/pathology , Mutation/genetics
2.
Nat Commun ; 14(1): 7552, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38016942

ABSTRACT

Microglia and neuroinflammation play an important role in the development and progression of Alzheimer's disease (AD). Inositol polyphosphate-5-phosphatase D (INPP5D/SHIP1) is a myeloid-expressed gene genetically-associated with AD. Through unbiased analyses of RNA and protein profiles in INPP5D-disrupted iPSC-derived human microglia, we find that reduction in INPP5D activity is associated with molecular profiles consistent with disrupted autophagy and inflammasome activation. These findings are validated through targeted pharmacological experiments which demonstrate that reduced INPP5D activity induces the formation of the NLRP3 inflammasome, cleavage of CASP1, and secretion of IL-1ß and IL-18. Further, in-depth analyses of human brain tissue across hundreds of individuals using a multi-analytic approach provides evidence that a reduction in function of INPP5D in microglia results in inflammasome activation in AD. These findings provide insights into the molecular mechanisms underlying microglia-mediated processes in AD and highlight the inflammasome as a potential therapeutic target for modulating INPP5D-mediated vulnerability to AD.


Subject(s)
Alzheimer Disease , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Microglia/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
3.
bioRxiv ; 2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36865139

ABSTRACT

Microglia and neuroinflammation are implicated in the development and progression of Alzheimer's disease (AD). To better understand microglia-mediated processes in AD, we studied the function of INPP5D/SHIP1, a gene linked to AD through GWAS. Immunostaining and single nucleus RNA sequencing confirmed that INPP5D expression in the adult human brain is largely restricted to microglia. Examination of prefrontal cortex across a large cohort revealed reduced full length INPP5D protein levels in AD patient brains compared to cognitively normal controls. The functional consequences of reduced INPP5D activity were evaluated in human induced pluripotent stem cell derived microglia (iMGLs), using both pharmacological inhibition of the phosphatase activity of INPP5D and genetic reduction in copy number. Unbiased transcriptional and proteomic profiling of iMGLs suggested an upregulation of innate immune signaling pathways, lower levels of scavenger receptors, and altered inflammasome signaling with INPP5D reduction. INPP5D inhibition induced the secretion of IL-1ß and IL-18, further implicating inflammasome activation. Inflammasome activation was confirmed through visualization of inflammasome formation through ASC immunostaining in INPP5D-inhibited iMGLs, increased cleaved caspase-1 and through rescue of elevated IL-1ß and IL-18 with caspase-1 and NLRP3 inhibitors. This work implicates INPP5D as a regulator of inflammasome signaling in human microglia.

4.
bioRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38187779

ABSTRACT

Recent investigations of cell type changes in Multiple Sclerosis (MS) using single-cell profiling methods have focused on active lesional and peri-lesional brain tissue, and have implicated a number of peripheral and central nervous system cell types. However, an important question is the extent to which so-called "normal-appearing" non-lesional tissue in individuals with MS accumulate changes over the lifespan. Here, we compared post-mortem non-lesional brain tissue from donors with a pathological or clinical diagnosis of MS from the Religious Orders Study or Rush Memory and Aging Project (ROSMAP) cohorts to age- and sex-matched brains from persons without MS (controls). We profiled three brain regions using single-nucleus RNA-seq: dorsolateral prefrontal cortex (DLPFC), normal appearing white matter (NAWM) and the pulvinar in thalamus (PULV), from 15 control individuals, 8 individuals with MS, and 5 individuals with other detrimental pathologies accompanied by demyelination, resulting in a total of 78 samples. We identified region- and cell type-specific differences in non-lesional samples from individuals diagnosed with MS and/or exhibiting secondary demyelination with other neurological conditions, as compared to control donors. These differences included lower proportions of oligodendrocytes with expression of myelination related genes MOBP, MBP, PLP1, as well as higher proportions of CRYAB+ oligodendrocytes in all three brain regions. Among microglial signatures, we identified subgroups that were higher in both demyelination (TMEM163+/ERC2+), as well as those that were specifically higher in MS donors (HIF1A+/SPP1+) and specifically in donors with secondary demyelination (SOCS6+/MYO1E+), in both white and grey matter. To validate our findings, we generated Visium spatial transcriptomics data on matched tissue from 13 donors, and recapitulated our observations of gene expression differences in oligodendrocytes and microglia. Finally, we show that some of the differences observed between control and MS donors in NAWM mirror those previously reported between control WM and active lesions in MS donors. Overall, our investigation sheds additional light on cell type- and disease-specific differences present even in non-lesional white and grey matter tissue, highlighting widespread cellular signatures that may be associated with downstream pathological changes.

5.
Genome Med ; 14(1): 136, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36447241

ABSTRACT

The rapid advancement of single-cell transcriptomics in neurology has allowed for profiling of post-mortem human brain tissue across multiple diseases. Over the past 3 years, several studies have examined tissue from donors with and without diagnoses of Alzheimer's disease, highlighting key changes in cell type composition and molecular signatures associated with pathology and, in some cases, cognitive decline. Although all of these studies have generated single-cell/nucleus RNA-seq or ATAC-seq data from the full array of major cell classes in the brain, they have each focused on changes in specific cell types. Here, we synthesize the main findings from these studies and contextualize them in the overall space of large-scale omics studies of Alzheimer's disease. Finally, we touch upon new horizons in the field, in particular advancements in high-resolution spatial interrogation of tissue and multi-modal efforts-and how they are likely to further advance mechanistic and target-selection studies on Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/genetics , Transcriptome , Brain , Autopsy
6.
Genes Cells ; 24(12): 836-847, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31651061

ABSTRACT

We used single-cell RNA sequencing (seq) on several human induced pluripotent stem (iPS) cell-derived neural stem cell (NSC) lines and one fetal brain-derived NSC line to study inherent cell type heterogeneity at proliferating neural stem cell stage and uncovered predisposed presence of neurogenic and gliogenic progenitors. We observed heterogeneity in neurogenic progenitors that differed between the iPS cell-derived NSC lines and the fetal-derived NSC line, and we also observed differences in spontaneous differentiation potential for inhibitory and excitatory neurons between the iPS cell-derived NSC lines and the fetal-derived NSC line. In addition, using a recently published glia patterning protocol we enriched for gliogenic progenitors and generated glial cells from an iPS cell-derived NSC line.


Subject(s)
Human Embryonic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Neurogenesis , Neuroglia/cytology , Cell Line , Cell Lineage , Cells, Cultured , Human Embryonic Stem Cells/classification , Humans , Induced Pluripotent Stem Cells/classification , Single-Cell Analysis
7.
Exp Cell Res ; 383(1): 111469, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31302032

ABSTRACT

We generated human iPS derived neural stem cells and differentiated cells from healthy control individuals and an individual with autism spectrum disorder carrying bi-allelic NRXN1-alpha deletion. We investigated the expression of NRXN1-alpha during neural induction and neural differentiation and observed a pivotal role for NRXN1-alpha during early neural induction and neuronal differentiation. Single cell RNA-seq pinpointed neural stem cells carrying NRXN1-alpha deletion shifting towards radial glia-like cell identity and revealed higher proportion of differentiated astroglia. Furthermore, neuronal cells carrying NRXN1-alpha deletion were identified as immature by single cell RNA-seq analysis, displayed significant depression in calcium signaling activity and presented impaired maturation action potential profile in neurons investigated with electrophysiology. Our observations propose NRXN1-alpha plays an important role for the efficient establishment of neural stem cells, in neuronal differentiation and in maturation of functional excitatory neuronal cells.


Subject(s)
Autistic Disorder/pathology , Calcium-Binding Proteins/genetics , Gene Deletion , Induced Pluripotent Stem Cells/pathology , Nerve Tissue Proteins/genetics , Neural Cell Adhesion Molecules/genetics , Neural Stem Cells/pathology , Single-Cell Analysis/methods , Action Potentials , Alleles , Autistic Disorder/genetics , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/metabolism , Neurogenesis/genetics
8.
PLoS One ; 13(10): e0204688, 2018.
Article in English | MEDLINE | ID: mdl-30307948

ABSTRACT

Human neurodegenerative disorders affect specific types of cortical neurons. Efficient protocols for the generation of such neurons for cell replacement, disease modeling and drug screening are highly warranted. Current methods for the production of cortical neurons from human embryonic stem (ES) cells are often time-consuming and inefficient, and the functional properties of the generated cells have been incompletely characterized. Here we have used transcription factor (TF) programming with the aim to induce rapid differentiation of human ES cells to layer-specific cortical neurons (hES-iNs). Three different combinations of TFs, NEUROGENIN 2 (NGN2) only, NGN2 plus Forebrain Embryonic Zinc Finger-Like Protein 2 (FEZF2), and NGN2 plus Special AT-Rich Sequence-Binding Protein 2 (SATB2), were delivered to human ES cells by lentiviral vectors. We observed only subtle differences between the TF combinations, which all gave rise to the formation of pyramidal-shaped cells, morphologically resembling adult human cortical neurons expressing cortical projection neuron (PN) markers and with mature electrophysiological properties. Using ex vivo transplantation to human organotypic cultures, we found that the hES-iNs could integrate into adult human cortical networks. We obtained no evidence that the hES-iNs had acquired a distinct cortical layer phenotype. Instead, our single-cell data showed that the hES-iNs, similar to fetal human cortical neurons, expressed both upper and deep layer cortical neuronal markers. Taken together, our findings provide evidence that TF programming can direct human ES cells towards cortical neurons but that the generated cells are transcriptionally profiled to generate both upper and deep layer cortical neurons. Therefore, most likely additional cues will be needed if these cells should adopt a specific cortical layer and area identity.


Subject(s)
Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers/metabolism , Cell Differentiation , Cell Line , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Genetic Vectors , Human Embryonic Stem Cells/transplantation , Humans , In Vitro Techniques , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurogenesis , Organ Culture Techniques , Pyramidal Cells/cytology , Pyramidal Cells/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription Factors/genetics
9.
Sci Rep ; 5: 16432, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26561036

ABSTRACT

A central tenet of signal transduction in eukaryotic cells is that extra-cellular ligands activate specific cell surface receptors, which orchestrate downstream responses. This ''protein-centric" view is increasingly challenged by evidence for the involvement of specialized membrane domains in signal transduction. Here, we propose that membrane perturbation may serve as an alternative mechanism to activate a conserved cell-death program in cancer cells. This view emerges from the extraordinary manner in which HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills a wide range of tumor cells in vitro and demonstrates therapeutic efficacy and selectivity in cancer models and clinical studies. We identify a ''receptor independent" transformation of vesicular motifs in model membranes, which is paralleled by gross remodeling of tumor cell membranes. Furthermore, we find that HAMLET accumulates within these de novo membrane conformations and define membrane blebs as cellular compartments for direct interactions of HAMLET with essential target proteins such as the Ras family of GTPases. Finally, we demonstrate lower sensitivity of healthy cell membranes to HAMLET challenge. These features suggest that HAMLET-induced curvature-dependent membrane conformations serve as surrogate receptors for initiating signal transduction cascades, ultimately leading to cell death.


Subject(s)
Cell Membrane/metabolism , Lactalbumin/metabolism , Oleic Acids/metabolism , Signal Transduction , Apoptosis , Cell Death , Cell Membrane Permeability , Humans , Ligands , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Protein Binding , Receptors, Cell Surface/metabolism , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...