Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 187(4): 882-896.e17, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38295787

ABSTRACT

Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.


Subject(s)
Gastritis , Stomach Neoplasms , Streptococcal Infections , Streptococcus anginosus , Animals , Humans , Mice , Atrophy/pathology , Carcinogenesis , Cell Transformation, Neoplastic , Gastric Mucosa , Gastritis/pathology , Inflammation/pathology , Mitogen-Activated Protein Kinases , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology , Streptococcus anginosus/physiology , Streptococcal Infections/pathology
2.
Bioorg Chem ; 124: 105863, 2022 07.
Article in English | MEDLINE | ID: mdl-35580381

ABSTRACT

Bacterial transcription is a valid but underutilized target for antimicrobial agent discovery because of its function of bacterial RNA synthesis. Bacterial transcription factors NusB and NusE form a transcription complex with RNA polymerase for bacterial ribosomal RNA synthesis. We previously identified a series of diarylimine and -amine inhibitors capable of inhibiting the interaction between NusB and NusE and exhibiting good antimicrobial activity. To further explore the structural viability of these inhibitors, coined "nusbiarylins", 36 new derivatives containing diverse substituents at the left benzene ring of inhibitors were synthesized based upon isosteric replacement and the structure-activity relationship concluded from earlier studies. Some of the derivatives displayed good to excellent antibacterial efficacy towards a panel of clinically significant pathogens including methicillin-resistance Staphylococcus aureus (MRSA) and vancomycin-resistance S. aureus (VRSA). In particular, compound 22r exhibited the best antimicrobial activity with a minimum inhibitory concentration (MIC) of 0.5 µg/mL. Diverse mechanistic studies validated the capability of 22r inhibiting the function of NusB protein and bacterial rRNA synthesis. In silico study of drug-like properties also provided promising results. Overall, this series of derivatives showed potential antimicrobial activity and drug-likeness and provided guidance for further optimization.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Bacteria , Microbial Sensitivity Tests , Staphylococcus aureus , Vancomycin-Resistant Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...