Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11605, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773127

ABSTRACT

Organophosphorus nerve agents are toxic compounds that disrupt neuromuscular transmission by inhibiting the neurotransmitter enzyme, acetylcholinesterase, leading to rapid death. A hybrid composite was synthesized using a hydrothermal process for the early detection of dimethyl methyl phosphonate (DMMP), a simulant of the G-series nerve agent, sarin. Quartz crystal microbalance (QCM) and surface acoustic wave (SAW) sensors were used as detectors. Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs), cobalt oxide (Co3O4), and N-MWCNT@Co3O4 were compared to detect DMMP concentrations of 25-150 ppm. At 25 ppm, the differential frequencies (Δf) of the N-MWCNT, Co3O4, and N-MWCNT@Co3O4 sensors were 5.8, 2.3, and 99.5 Hz, respectively. The selectivity results revealed a preference for the DMMP rather than potential interference. The coefficients of determination (R2) of the N-MWCNT, Co3O4, and N-MWCNT@Co3O4 sensors for detecting 25-150 ppm DMMP were 0.983, 0.986, and 0.999, respectively. The response times of the N-MWCNT, Co3O4, and N-MWCNT@Co3O4 sensors for detecting 100 ppm DMMP were 25, 27, and 34 s, respectively, while the corresponding recovery times were 85, 105, and 181 s. The repeatability results revealed the reversible adsorption and desorption phenomena for the fixed DMMP concentration of 100 ppm. These unique findings show that synthesized materials can be used to detect organophosphorus nerve agents.

2.
Materials (Basel) ; 15(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36295378

ABSTRACT

Chemical warfare agents (CWAs) have been threatening human civilization and its existence because of their rapid response, toxic, and irreversible nature. The hybrid nanostructured composites were synthesized by the hydrothermal process to detect the dimethyl methyl phosphonate (DMMP), a simulant of G-series nerve agents, especially sarin. Cellulose (CE), manganese oxide cellulose (MnO2@CE), and MnO2@CE/polypyrrole (PPy) exhibited a frequency shift of 0.4, 4.8, and 8.9 Hz, respectively, for a DMMP concentration of 25 ppm in the quartz crystal microbalance (QCM). In surface acoustic wave (SAW) sensor, they exhibited 187 Hz, 276 Hz, and 78 Hz, respectively. A comparison between CE, MnO2@CE, and MnO2@CE/PPy demonstrated that MnO2@CE/PPy possesses excellent linearity with a coefficient of determination (COD or R2) of 0.992 and 0.9547 in the QCM and SAW sensor. The hybrid composite materials showed a reversible adsorption and desorption phenomenon in the reproducibility test. The response and recovery times indicated that MnO2@CE/PPy showed the shortest response (~23 s) and recovery times (~42 s) in the case of the QCM sensor. Hence, the pristine CE and its nanostructured composites were compared to analyze the sensing performance based on sensitivity, selectivity, linearity, reproducibility, and response and recovery times to detect the simulant of nerve agents.

3.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080003

ABSTRACT

Chemical warfare agents (CWAs) have inflicted monumental damage to human lives from World War I to modern warfare in the form of armed conflict, terrorist attacks, and civil wars. Is it possible to detect the CWAs early and prevent the loss of human lives? To answer this research question, we synthesized hybrid composite materials to sense CWAs using hydrothermal and thermal reduction processes. The synthesized hybrid composite materials were evaluated with quartz crystal microbalance (QCM) and surface acoustic wave (SAW) sensors as detectors. The main findings from this study are: (1) For a low dimethyl methyl phosphonate (DMMP) concentration of 25 ppm, manganese dioxide nitrogen-doped graphene oxide (NGO@MnO2) and NGO@MnO2/Polypyrrole (PPy) showed the sensitivities of 7 and 51 Hz for the QCM sensor and 146 and 98 Hz for the SAW sensor. (2) NGO@MnO2 and NGO@MnO2/PPy showed sensitivities of more than 50-fold in the QCM sensor and 100-fold in the SAW sensor between DMMP and potential interferences. (3) NGO@MnO2 and NGO@MnO2/PPy showed coefficients of determination (R2) of 0.992 and 0.975 for the QCM sensor and 0.979 and 0.989 for the SAW sensor. (4) NGO@MnO2 and NGO@MnO2/PPy showed repeatability of 7.00 ± 0.55 and 47.29 ± 2.69 Hz in the QCM sensor and 656.37 ± 73.96 and 665.83 ± 77.50 Hz in the SAW sensor. Based on these unique findings, we propose NGO@MnO2 and NGO@MnO2/PPy as potential candidate materials that could be used to detect CWAs.

4.
Micromachines (Basel) ; 12(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073136

ABSTRACT

Nanostructured materials synthesized by the hydrothermal and thermal reduction process were tested to detect the dimethyl methylphosphonate (DMMP) as a simulant for chemical warfare agents. Manganese oxide nitrogen-doped graphene oxide with polypyrrole (MnO2@NGO/PPy) exhibited the sensitivity of 51 Hz for 25 ppm of DMMP and showed the selectivity of 1.26 Hz/ppm. Nitrogen-doped multi-walled carbon nanotube (N-MWCNT) demonstrated good linearity with a correlation coefficient of 0.997. A comparison between a surface acoustic wave and quartz crystal microbalance sensor exhibited more than 100-times higher sensitivity of SAW sensor than QCM sensor.

SELECTION OF CITATIONS
SEARCH DETAIL