Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 18(6): e1010236, 2022 06.
Article in English | MEDLINE | ID: mdl-35759459

ABSTRACT

Microtubules and their post-translational modifications are involved in major cellular processes. In severe diseases such as neurodegenerative disorders, tyrosinated tubulin and tyrosinated microtubules are in lower concentration. We present here a mechanistic mathematical model of the microtubule tyrosination cycle combining computational modeling and high-content image analyses to understand the key kinetic parameters governing the tyrosination status in different cellular models. That mathematical model is parameterized, firstly, for neuronal cells using kinetic values taken from the literature, and, secondly, for proliferative cells, by a change of two parameter values obtained, and shown minimal, by a continuous optimization procedure based on temporal logic constraints to formalize experimental high-content imaging data. In both cases, the mathematical models explain the inability to increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme. The tyrosinated tubulin is indeed the product of a chain of two reactions in the cycle: the detyrosinated microtubule depolymerization followed by its tyrosination. The tyrosination status at equilibrium is thus limited by both reaction rates and activating the tyrosination reaction alone is not effective. Our computational model also predicts the effect of inhibiting the Tubulin Carboxy Peptidase enzyme which we have experimentally validated in MEF cellular model. Furthermore, the model predicts that the activation of two particular kinetic parameters, the tyrosination and detyrosinated microtubule depolymerization rate constants, in synergy, should suffice to enable an increase of the tyrosination status in living cells.


Subject(s)
Tubulin , Tyrosine , Drug Evaluation, Preclinical , Microtubules/chemistry , Models, Theoretical
2.
Am J Physiol Heart Circ Physiol ; 311(1): H44-53, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27199128

ABSTRACT

Cardiomyocytes derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) are increasingly used for in vitro assays and represent an interesting opportunity to increase the data throughput for drug development. In this work, we describe a 96-well recording of synchronous electrical activities from spontaneously beating hiPSC-derived cardiomyocyte monolayers. The signal was obtained with a fast-imaging plate reader using a submillisecond-responding membrane potential recording assay, FluoVolt, based on a newly derived voltage-sensitive fluorescent dye. In our conditions, the toxicity of the dye was moderate and compatible with episodic recordings for >3 h. We show that the waveforms recorded from a whole well or from a single cell-sized zone are equivalent and make available critical functional parameters that are usually accessible only with gold standard techniques like intracellular microelectrode recording. This approach allows accurate identification of the electrophysiological effects of reference drugs on the different phases of the cardiac action potential as follows: fast depolarization (lidocaine), early repolarization (nifedipine, Bay K8644, and veratridine), late repolarization (dofetilide), and diastolic slow depolarization (ivabradine). Furthermore, the data generated with the FluoVolt dye can be pertinently complemented with a calcium-sensitive dye for deeper characterization of the pharmacological responses. In a semiautomated plate reader, the two probes used simultaneously in 96-well plates provide an easy and powerful multiparametric assay to rapidly and precisely evaluate the cardiotropic profile of compounds for drug discovery or cardiac safety.


Subject(s)
Action Potentials/drug effects , Calcium Signaling/drug effects , Fluorescent Dyes/metabolism , High-Throughput Screening Assays , Induced Pluripotent Stem Cells/drug effects , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Automation, Laboratory , Cell Line , Dose-Response Relationship, Drug , Fluorescent Dyes/toxicity , Humans , Induced Pluripotent Stem Cells/metabolism , Microscopy, Fluorescence , Myocytes, Cardiac/metabolism , Signal Processing, Computer-Assisted , Time Factors
3.
Protein Sci ; 21(9): 1323-33, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22760822

ABSTRACT

The human thioredoxin (TRX)-interacting protein is found in multiple subcellular compartments and plays a major role in redox homeostasis, particularly in the context of metabolism (e.g., lipidemia and glycemia) and apoptosis. A molecular approach to the protein's modus operandi is still needed because some aspects of the TRX-interacting protein-mediated regulation of TRX are not clearly understood. To this end, His-tagged TRX-interacting proteins were over-expressed in Escherichia coli. Because the protein is expressed mainly in inclusion bodies, it was denatured in high concentrations of guanidium hydrochloride, centrifuged, and purified by Ni-NTA affinity chromatography. His-TRX-interacting protein was then refolded by dialysis and its restructuring monitored by circular dichroism spectrometry. This preparation resulted in the formation of a covalent complex with recombinant human TRX, demonstrating that association occurs without the intervention of other partner proteins. Multiple cysteine-to-serine mutants of TRX-interacting protein were produced and purified. These mutations were efficient in limiting the formation of disulfide-linked homo-oligomers in an oxidizing environment. The mutants were also used to gain functional insight into the formation of the TRX-interacting protein-TRX complexes. These complexes were able to form in the absence of internal disulfide bridges. A mutant with all but one cysteine changed to serine (Cys ²47) also showed an enhanced capacity to form complexes with TRX demonstrating, in a pure molecular system, that this particular cysteine is likely responsible for the disulfide bridge between TRX-interacting protein and TRX.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Disulfides/metabolism , Thioredoxins/metabolism , Amino Acid Substitution , Animals , Carrier Proteins/chemistry , Carrier Proteins/isolation & purification , Cell Line , Cloning, Molecular , Cysteine/chemistry , Cysteine/genetics , Cysteine/metabolism , Escherichia coli/genetics , Humans , Oxidation-Reduction , Protein Refolding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
4.
J Biomol Screen ; 15(8): 956-67, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20625180

ABSTRACT

The development of cell-based assays for high-throughput screening (HTS) approaches often requires the generation of stable transformant cell lines. However, these cell lines are essentially created by random integration of a gene of interest (GOI) with no control over the level and stability of gene expression. The authors developed a targeted integration system in Chinese hamster ovary (CHO) cells, called the cellular genome positioning system (cGPS), based on the stimulation of homologous gene targeting by meganucleases. Five different GOIs were knocked in at the same locus in cGPS CHO-K1 cells. Further characterization revealed that the cGPS CHO-K1 system is more rapid (2-week protocol), efficient (all selected clones expressed the GOI), reproducible (GOI expression level variation of 12%), and stable over time (no change in GOI expression after 23 weeks of culture) than classical random integration. Moreover, in all cGPS CHO-K1 targeted clones, the recombinant protein was biologically active and its properties similar to the endogenous protein. This fast and robust method opens the door for creating large collections of cell lines of better quality and expressing therapeutically relevant GOIs at physiological levels, thereby enhancing the potential scope of HTS.


Subject(s)
Cells/metabolism , Deoxyribonucleases/physiology , Gene Targeting/methods , High-Throughput Screening Assays/methods , Mutagenesis, Site-Directed/methods , Animals , CHO Cells , Cell Line , Cells/cytology , Chromosome Mapping/methods , Cricetinae , Cricetulus , Deoxyribonucleases/metabolism , Models, Biological , Time Factors , Transfection
5.
Cell Signal ; 17(4): 489-96, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15601626

ABSTRACT

Neuropeptide Y (NPY) has several receptors; one of them, the neuropeptide Y5 receptor (NPY5) seems involved in feeding behavior in mammals. Although this particular receptor has been extensively studied in the literature, the difficulties encountered to obtain a stable cell line expressing this recombinant receptor have impaired the development of tools necessary to establish its molecular pharmacology. We thus established a method for the functional study of new ligands. It is based upon the cotransfection in human melatonin receptor 1 (MT1)-overexpressing HEK293 cells of three plasmids encoding melanocortin receptor (MC5), neuropeptide Y5 receptor (NPY5) and a cyclic AMP response element-controlled luciferase. Once challenged with alphaMSH, the MC5 receptor activates the cyclic AMP response, through the coupling protein subunit G(s). In contrast, NPY5 agonists, through the NPY5 receptor which is negatively coupled to the same pathway, counteract the alphaMSH-mediated effect on cyclic AMP level. Using appropriate controls, this method can pinpoint compounds with antagonistic activity. Simple and straightforward, this system permits reproducible measurements of agonist or antagonist effects in the presence of neuropeptide Y, the natural agonist. This method has the advantage over already existing methods and beyond its apparent complexity, to enhance the cyclic AMP concentration at a 'physiological' level, by opposition to a forskolin-induced adenylate cyclase activation. Finally, to further validate this assay, we showed results from (1) a series of natural peptidic agonists that permitted the standardization and (2) a series of potent nonpeptidic antagonists (affinity >10(-9) M) that form a new class of active NPY5 receptor antagonists.


Subject(s)
Genes, Reporter , Luciferases/genetics , Receptors, Neuropeptide Y/antagonists & inhibitors , Biological Assay , Humans , Ligands , Neuropeptide Y/pharmacology , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Receptors, Neuropeptide Y/genetics , Receptors, Neuropeptide Y/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
6.
Biochem J ; 369(Pt 3): 667-73, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12398768

ABSTRACT

The neuropeptide Y Y5 receptor gene generates two splice variants, referred to here as Y5(L) (long isoform) and Y5(S) (short isoform). Y5(L) mRNA differs from Y5(S) mRNA in its 5' end, generating a putative open reading frame with 30 additional nucleotides upstream of the initiator AUG compared with the Y5(S) mRNA. The purpose of the present work was to investigate the existence of the Y5(L) mRNA. The authenticity of this transcript was confirmed by isolating part of its 5' untranslated region through 5' rapid amplification of cDNA ends and analysing its tissue distribution. To study the initiation of translation on Y5(L) mRNA, we cloned the Y5(L) cDNA and two Y5(L) cDNA mutants lacking the first or the second putative initiation start codon. Transient expression of the three plasmids in COS-7 cells and saturation binding experiments using (125)I-labelled polypeptide YY (PYY) as a ligand showed that initiation of translation on Y5(L) mRNA could start at the first AUG, giving rise to a Y5(L) receptor with an N-terminal 10-amino-acid extension when compared with the Y5(S) receptor. The human Y5(L) and Y5(S) receptor isoforms displayed similar affinity constants (1.3 nM and 1.5 nM respectively). [(125)I]PYY binding to COS-7 cells expressing either the Y5(L) or the Y5(S) isoform was inhibited with the same rank order of potency by a selection of six chemically diverse compounds: PYY>neuropeptide Y>pancreatic polypeptide>CGP71683A>Synaptic 34>Banyu 6. Comparison of the tissue distribution of Y5(L) and Y5(S) mRNAs, as determined by reverse transcription-PCR analysis, indicated that expression of Y5(L) mRNA occurs in a tissue-specific manner. Finally, we have shown that the two AUG triplets contained in the 5' untranslated region of Y5(L) mRNA did not affect receptor expression.


Subject(s)
5' Untranslated Regions , Arginine/analogs & derivatives , Receptors, Neuropeptide Y/drug effects , Receptors, Neuropeptide Y/genetics , Alternative Splicing , Animals , Arginine/pharmacology , Base Sequence , Brain/metabolism , COS Cells/drug effects , Cloning, Molecular , Codon, Initiator , Humans , Molecular Sequence Data , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Protein Biosynthesis , Protein Isoforms/drug effects , Protein Isoforms/genetics , RNA, Messenger/metabolism , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/metabolism , Transcription, Genetic , Trinucleotide Repeats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...