Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hepatol ; 59(2): 285-91, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23542345

ABSTRACT

BACKGROUND & AIMS: Conflicting results have been reported regarding the impact of hepatitis B virus X protein (HBx) expression on liver regeneration triggered by partial hepatectomy (PH). In the present report we investigated the mechanisms by which HBx protein alters hepatocyte proliferation after PH. METHODS: PH was performed on a transgenic mouse model in which HBx expression is under the control of viral regulatory elements and liver regeneration was monitored. LPS, IL-6 neutralizing antibody, and SB203580 were injected after PH to evaluate IL-6 participation during liver regeneration. RESULTS: Cell cycle progression of hepatocytes was delayed in HBx transgenic mice compared to WT animals. Moreover, HBx induced higher secretion of IL-6 soon after PH. Upregulation of IL-6 was associated with an elevation of STAT3 phosphorylation, SOCS3 transcript accumulation and a decrease in ERK1/2 phosphorylation in the livers of HBx transgenic mice. The involvement of IL-6 overexpression in cell cycle deregulation was confirmed by the inhibition of liver regeneration in control mice after the upregulation of IL-6 expression using LPS. In addition, IL-6 neutralization with antibodies was able to restore liver regeneration in HBx mice. Finally, the direct role of p38 in IL-6 secretion after PH was demonstrated using SB203580, a pharmacological inhibitor. CONCLUSIONS: HBx is able to induce delayed hepatocyte proliferation after PH, and HBx-induced IL-6 overexpression is involved in delayed liver regeneration. By modulating IL-6 expression during liver proliferation induced by stimulation of the cellular microenvironment, HBx may participate in cell cycle deregulation and progression of liver disease.


Subject(s)
Interleukin-6/physiology , Liver Regeneration/physiology , Trans-Activators/physiology , Animals , Antibodies, Neutralizing/administration & dosage , Cell Cycle , Cell Proliferation , Enhancer Elements, Genetic , Hepatectomy , Hepatitis B virus/genetics , Hepatitis B virus/pathogenicity , Hepatitis B virus/physiology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/virology , Hepatocytes/immunology , Hepatocytes/pathology , Hepatocytes/virology , Host-Pathogen Interactions , Humans , Imidazoles/administration & dosage , Interleukin-6/antagonists & inhibitors , Liver Regeneration/genetics , Liver Regeneration/immunology , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Promoter Regions, Genetic , Pyridines/administration & dosage , Trans-Activators/genetics , Viral Regulatory and Accessory Proteins
2.
PLoS One ; 6(12): e25096, 2011.
Article in English | MEDLINE | ID: mdl-22162746

ABSTRACT

Current treatments for HBV chronic carriers using interferon alpha or nucleoside analogues are not effective in all patients and may induce the emergence of HBV resistant strains. Bay 41-4109, a member of the heteroaryldihydropyrimidine family, inhibits HBV replication by destabilizing capsid assembly. The aim of this study was to determine the antiviral effect of Bay 41-4109 in a mouse model with humanized liver and the spread of active HBV. Antiviral assays of Bay 41-4109 on HepG2.2.15 cells constitutively expressing HBV, displayed an IC(50) of about 202 nM with no cell toxicity. Alb-uPA/SCID mice were transplanted with human hepatocytes and infected with HBV. Ten days post-infection, the mice were treated with Bay 41-4109 for five days. During the 30 days of follow-up, the HBV load was evaluated by quantitative PCR. At the end of treatment, decreased HBV viremia of about 1 log(10) copies/ml was observed. By contrast, increased HBV viremia of about 0.5 log(10) copies/ml was measured in the control group. Five days after the end of treatment, a rebound of HBV viremia occurred in the treated group. Furthermore, 15 days after treatment discontinuation, a similar expression of the viral capsid was evidenced in liver biopsies. Our findings demonstrate that Bay 41-4109 displayed antiviral properties against HBV in humanized Alb-uPA/SCID mice and confirm the usefulness of Alb-uPA/SCID mice for the evaluation of pharmaceutical compounds. The administration of Bay 41-4109 may constitute a new strategy for the treatment of patients in escape from standard antiviral therapy.


Subject(s)
Albumins/metabolism , Antiviral Agents/pharmacology , Hepatitis B virus/metabolism , Hepatitis B/drug therapy , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Biopsy/methods , DNA, Viral/metabolism , Hepatocytes/cytology , Humans , Immunohistochemistry/methods , Kinetics , Liver/metabolism , Liver/virology , Mice , Mice, SCID , Viral Load
3.
Antivir Ther ; 15(6): 861-9, 2010.
Article in English | MEDLINE | ID: mdl-20834098

ABSTRACT

BACKGROUND: Treatment of HBV chronic carriers using interferon (IFN)-α or nucleoside/nucleotide analogues fails to suppress viral infection. Type-II IFN-γ has been shown to inhibit HBV replication. The goal of the present work was to evaluate the antiviral efficacy against HBV of a thermostable IFN-γ variant isolated using Massive Mutagenesis and thermoresistant selection (THR) technologies. METHODS: The thermostability of wild-type (wt) and S63C IFN-γ was determined in vitro and in vivo. Activation of the IFN-γ responsive element by wt and S63C IFN-γ was tested using a luciferase assay. HepG2.2.15 cells constitutively expressing HBV were used to analyse the antiviral activity of wt and S63C IFN-γ against HBV replication. Intracellular HBV DNA was detected by Southern blot and quantified by real-time PCR analyses. RESULTS: S63C IFN-γ was shown to be more thermostable and had a longer half-life than wt IFN-γ. Both wt and S63C IFN-γ displayed a similar capacity to activate the IFN pathway. The treatment of HepG2.2.15 cells with wt or S63C IFN-γ induced the inhibition of HBV viral replication. After heating, S63C IFN-γ displayed better conservation of its antiviral activity against HBV when compared with wt IFN-γ. CONCLUSIONS: These results confirm that the THR method can be used to isolate mutants with enhanced thermostability and demonstrate that a thermostable IFN-γ variant presents antiviral properties against HBV replication. This molecule could provide a new strategy to treat patients who do not respond to antiviral therapy.


Subject(s)
DNA Replication , Hepatitis B virus/physiology , Interferon-gamma/pharmacology , Virus Replication , Animals , Antiviral Agents/pharmacology , DNA, Viral/biosynthesis , Female , Half-Life , HeLa Cells , Hep G2 Cells , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Humans , Interferon-gamma/genetics , Mice , Mice, Inbred C57BL , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...