Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
R Soc Open Sci ; 9(1): 211165, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35070343

ABSTRACT

The history of molecular oxygen (O2) in Earth's atmosphere is still debated; however, geological evidence supports at least two major episodes where O2 increased by an order of magnitude or more: the Great Oxidation Event (GOE) and the Neoproterozoic Oxidation Event. O2 concentrations have likely fluctuated (between 10-3 and 1.5 times the present atmospheric level) since the GOE ∼2.4 Gyr ago, resulting in a time-varying ozone (O3) layer. Using a three-dimensional chemistry-climate model, we simulate changes in O3 in Earth's atmosphere since the GOE and consider the implications for surface habitability, and glaciation during the Mesoproterozoic. We find lower O3 columns (reduced by up to 4.68 times for a given O2 level) compared to previous work; hence, higher fluxes of biologically harmful UV radiation would have reached the surface. Reduced O3 leads to enhanced tropospheric production of the hydroxyl radical (OH) which then substantially reduces the lifetime of methane (CH4). We show that a CH4 supported greenhouse effect during the Mesoproterozoic is highly unlikely. The reduced O3 columns we simulate have important implications for astrobiological and terrestrial habitability, demonstrating the relevance of three-dimensional chemistry-climate simulations when assessing paleoclimates and the habitability of faraway worlds.

2.
J Geophys Res Atmos ; 124(23): 12824-12844, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-32025453

ABSTRACT

Quantifying the efficacy of different climate forcings is important for understanding the real-world climate sensitivity. This study presents a systematic multimodel analysis of different climate driver efficacies using simulations from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). Efficacies calculated from instantaneous radiative forcing deviate considerably from unity across forcing agents and models. Effective radiative forcing (ERF) is a better predictor of global mean near-surface air temperature (GSAT) change. Efficacies are closest to one when ERF is computed using fixed sea surface temperature experiments and adjusted for land surface temperature changes using radiative kernels. Multimodel mean efficacies based on ERF are close to one for global perturbations of methane, sulfate, black carbon, and insolation, but there is notable intermodel spread. We do not find robust evidence that the geographic location of sulfate aerosol affects its efficacy. GSAT is found to respond more slowly to aerosol forcing than CO2 in the early stages of simulations. Despite these differences, we find that there is no evidence for an efficacy effect on historical GSAT trend estimates based on simulations with an impulse response model, nor on the resulting estimates of climate sensitivity derived from the historical period. However, the considerable intermodel spread in the computed efficacies means that we cannot rule out an efficacy-induced bias of ±0.4 K in equilibrium climate sensitivity to CO2 doubling when estimated using the historical GSAT trend.

3.
Nat Commun ; 9(1): 1922, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765048

ABSTRACT

Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability.

4.
J Clim ; 31(11): 4429-4447, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-32704205

ABSTRACT

Atmospheric aerosols such as sulfate and black carbon (BC) generate inhomogeneous radiative forcing and can affect precipitation in distinct ways compared to greenhouse gases (GHGs). Their regional effects on the atmospheric energy budget and circulation can be important for understanding and predicting global and regional precipitation changes, which act on top of the background GHG-induced hydrological changes. Under the framework of the Precipitation Driver Response Model Inter-comparison Project (PDRMIP), multiple models were used for the first time to simulate the influence of regional (Asian and European) sulfate and BC forcing on global and regional precipitation. The results show that, as in the case of global aerosol forcing, the global fast precipitation response to regional aerosol forcing scales with global atmospheric absorption, and the slow precipitation response scales with global surface temperature response. Asian sulphate aerosols appear to be a stronger driver of global temperature and precipitation change compared to European aerosols, but when the responses are normalised by unit radiative forcing or by aerosol burden change, the picture reverses, with European aerosols being more efficient in driving global change. The global apparent hydrological sensitivities of these regional forcing experiments are again consistent with those for corresponding global aerosol forcings found in the literature. However, the regional responses and regional apparent hydrological sensitivities do not align with the corresponding global values. Through a holistic approach involving analysis of the energy budget combined with exploring changes in atmospheric dynamics, we provide a framework for explaining the global and regional precipitation responses to regional aerosol forcing.

5.
Geophys Res Lett ; 45(6): 2815-2825, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-33041385

ABSTRACT

Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyse the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven circulation changes, but the magnitude is uncertain. CO2 drives reductions in precipitation concentrated in the east, mainly due to a robustly negative, but highly variable in magnitude, fast response. We find that the physiological effect of CO2 on plant stomata is the dominant driver of the fast response due to reduced latent heating, and also contributes to the large model spread. Using a simple model we show that CO2 physiological effects dominate future multi-model mean precipitation projections over the Amazon. However, in individual models temperature-driven changes can be large, but due to little agreement, they largely cancel out in the model-mean.

6.
Geophys Res Lett ; 45(21): 12023-12031, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30686845

ABSTRACT

Rapid adjustments are responses to forcing agents that cause a perturbation to the top of atmosphere energy budget but are uncoupled to changes in surface warming. Different mechanisms are responsible for these adjustments for a variety of climate drivers. These remain to be quantified in detail. It is shown that rapid adjustments reduce the effective radiative forcing (ERF) of black carbon by half of the instantaneous forcing, but for CO2 forcing, rapid adjustments increase ERF. Competing tropospheric adjustments for CO2 forcing are individually significant but sum to zero, such that the ERF equals the stratospherically adjusted radiative forcing, but this is not true for other forcing agents. Additional experiments of increase in the solar constant and increase in CH4 are used to show that a key factor of the rapid adjustment for an individual climate driver is changes in temperature in the upper troposphere and lower stratosphere.

7.
Geophys Res Lett ; 45(20): 11399-11405, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30774164

ABSTRACT

Different climate drivers influence precipitation in different ways. Here we use radiative kernels to understand the influence of rapid adjustment processes on precipitation in climate models. Rapid adjustments are generally triggered by the initial heating or cooling of the atmosphere from an external climate driver. For precipitation changes, rapid adjustments due to changes in temperature, water vapor, and clouds are most important. In this study we have investigated five climate drivers (CO2, CH4, solar irradiance, black carbon, and sulfate aerosols). The fast precipitation responses to a doubling of CO2 and a 10-fold increase in black carbon are found to be similar, despite very different instantaneous changes in the radiative cooling, individual rapid adjustments, and sensible heating. The model diversity in rapid adjustments is smaller for the experiment involving an increase in the solar irradiance compared to the other climate driver perturbations, and this is also seen in the precipitation changes.

8.
Bull Am Meteorol Soc ; 98(6): 1185-1198, 2017 Jun.
Article in English | MEDLINE | ID: mdl-32713957

ABSTRACT

As the global temperature increases with changing climate, precipitation rates and patterns are affected through a wide range of physical mechanisms. The globally averaged intensity of extreme precipitation also changes more rapidly than the globally averaged precipitation rate. While some aspects of the regional variation in precipitation predicted by climate models appear robust, there is still a large degree of inter-model differences unaccounted for. Individual drivers of climate change initially alter the energy budget of the atmosphere leading to distinct rapid adjustments involving changes in precipitation. Differences in how these rapid adjustment processes manifest themselves within models are likely to explain a large fraction of the present model spread and needs better quantifications to improve precipitation predictions. Here, we introduce the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where a set of idealized experiments designed to understand the role of different climate forcing mechanisms were performed by a large set of climate models. PDRMIP focuses on understanding how precipitation changes relating to rapid adjustments and slower responses to climate forcings are represented across models. Initial results show that rapid adjustments account for large regional differences in hydrological sensitivity across multiple drivers. The PDRMIP results are expected to dramatically improve our understanding of the causes of the present diversity in future climate projections.

9.
J Geophys Res Atmos ; 122(9): 5024-5038, 2017 May 16.
Article in English | MEDLINE | ID: mdl-33005557

ABSTRACT

Emissions of aerosols and their precursors are declining due to policies enacted to protect human health, yet we currently lack a full understanding of the magnitude, spatiotemporal pattern, statistical significance, and physical mechanisms of precipitation responses to aerosol reductions. We quantify the global and regional precipitation responses to U.S. SO2 emission reductions using three fully coupled chemistry-climate models: Community Earth System Model version 1, Geophysical Fluid Dynamics Laboratory Coupled Model 3, and Goddard Institute for Space Studies ModelE2. We contrast 200 year (or longer) simulations in which anthropogenic U.S. sulfur dioxide (SO2) emissions are set to zero with present-day control simulations to assess the aerosol, cloud, and precipitation response to U.S. SO2 reductions. In all three models, reductions in aerosol optical depth up to 70% and cloud droplet number column concentration up to 60% occur over the eastern U.S. and extend over the Atlantic Ocean. Precipitation responses occur both locally and remotely, with the models consistently showing an increase in most regions considered. We find a northward shift of the tropical rain belt location of up to 0.35° latitude especially near the Sahel, where the rainy season length and intensity are significantly enhanced in two of the three models. This enhancement is the result of greater warming in the Northern versus Southern Hemispheres, which acts to shift the Intertropical Convergence Zone northward, delivering additional wet season rainfall to the Sahel. Two of our three models thus imply a previously unconsidered benefit of continued U.S. SO2 reductions for Sahel precipitation.

10.
Bull Am Meteorol Soc ; 98(1): 106-128, 2017 Jan.
Article in English | MEDLINE | ID: mdl-29636590

ABSTRACT

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, ATTREX and CAST, using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.

11.
Atmos Chem Phys ; 13(18): 9607-9621, 2013 Sep.
Article in English | MEDLINE | ID: mdl-34135946

ABSTRACT

Dynamical downscaling was applied in this study to link the global climate-chemistry model Community Atmosphere Model (CAM-Chem) with the regional models Weather Research and Forecasting (WRF) Model and Community Multi-scale Air Quality (CMAQ). Two representative concentration pathway (RCP) scenarios (RCP 4.5 and RCP 8.5) were used to evaluate the climate impact on ozone concentrations in the 2050s. From the CAM-Chem global simulation results, ozone concentrations in the lower to mid-troposphere (surface to ~300 hPa), from mid- to high latitudes in the Northern Hemisphere, decreases by the end of the 2050s (2057-2059) in RCP 4.5 compared to present (2001-2004), with the largest decrease of 4-10 ppbv occurring in the summer and the fall; and an increase as high as 10 ppbv in RCP 8.5 resulting from the increased methane emissions. From the regional model CMAQ simulation results, under the RCP 4.5 scenario (2057-2059), in the summer when photochemical reactions are the most active, the large ozone precursor emissions reduction leads to the greatest decrease of downscaled surface ozone concentrations compared to present (2001-2004), ranging from 6 to 10 ppbv. However, a few major cities show ozone increases of 3 to 7 ppbv due to weakened NO titration. Under the RCP 8.5 scenario, in winter, downscaled ozone concentrations increase across nearly the entire continental US in winter, ranging from 3 to 10 ppbv due to increased methane emissions. More intense heat waves are projected to occur by the end of the 2050s in RCP 8.5, leading to a 0.3 ppbv to 2.0 ppbv increase (statistically significant except in the Southeast) of the mean maximum daily 8 h daily average (MDA8) ozone in nine climate regions in the US. Moreover, the upper 95% limit of MDA8 increase reaches 0.4 ppbv to 1.5 ppbv in RCP 4.5 and 0.6 ppbv to 3.2 ppbv in RCP 8.5. The magnitude differences of increase between RCP 4.5 and 8.5 also reflect that the increase of methane emissions may favor or strengthen the effect of heat waves.

12.
Environ Sci Technol ; 40(11): 3586-94, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16786698

ABSTRACT

Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using 26 state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first (CLE) scenario reflects implementation of current air quality legislation around the world, while the second (MFR) represents a more optimistic case in which all currently feasible technologies are applied to achieve maximum emission reductions. We contrast these scenarios with the more pessimistic IPCC SRES A2 scenario. Ensemble simulations for the year 2000 are consistent among models and show a reasonable agreement with surface ozone, wet deposition, and NO2 satellite observations. Large parts of the world are currently exposed to high ozone concentrations and high deposition of nitrogen to ecosystems. By 2030, global surface ozone is calculated to increase globally by 1.5 +/- 1.2 ppb (CLE) and 4.3 +/- 2.2 ppb (A2), using the ensemble mean model results and associated +/-1 sigma standard deviations. Only the progressive MFR scenario will reduce ozone, by -2.3 +/- 1.1 ppb. Climate change is expected to modify surface ozone by -0.8 +/- 0.6 ppb, with larger decreases over sea than over land. Radiative forcing by ozone increases by 63 +/- 15 and 155 +/- 37 mW m(-2) for CLE and A2, respectively, and decreases by -45 +/- 15 mW m(-2) for MFR. We compute that at present 10.1% of the global natural terrestrial ecosystems are exposed to nitrogen deposition above a critical load of 1 g N m(-2) yr(-1). These percentages increase by 2030 to 15.8% (CLE), 10.5% (MFR), and 25% (A2). This study shows the importance of enforcing current worldwide air quality legislation and the major benefits of going further. Nonattainment of these air quality policy objectives, such as expressed by the SRES-A2 scenario, would further degrade the global atmospheric environment.


Subject(s)
Air Pollutants/analysis , Air Pollution/prevention & control , Atmosphere/analysis , Environmental Monitoring/methods , Animals , Ecology/methods , Ecology/trends , Ecosystem , Forecasting , Greenhouse Effect , Humans , Nitrogen/analysis , Ozone/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...