Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Front Physiol ; 15: 1346971, 2024.
Article in English | MEDLINE | ID: mdl-38827992

ABSTRACT

The epidermis, the outermost layer of the skin, serves as a protective barrier against external factors. Epidermal differentiation, a tightly regulated process essential for epidermal homeostasis, epidermal barrier formation and skin integrity maintenance, is orchestrated by several players, including signaling molecules, calcium gradient and junctional complexes such as gap junctions (GJs). GJ proteins, known as connexins facilitate cell-to-cell communication between adjacent keratinocytes. Connexins can function as either hemichannels or GJs, depending on their interaction with other connexons from neighboring keratinocytes. These channels enable the transport of metabolites, cAMP, microRNAs, and ions, including Ca2+, across cell membranes. At least ten distinct connexins are expressed within the epidermis and mutations in at least five of them has been linked to various skin disorders. Connexin mutations may cause aberrant channel activity by altering their synthesis, their gating properties, their intracellular trafficking, and the assembly of hemichannels and GJ channels. In addition to mutations, connexin expression is dysregulated in other skin conditions including psoriasis, chronic wound and skin cancers, indicating the crucial role of connexins in skin homeostasis. Current treatment options for conditions with mutant or altered connexins are limited and primarily focus on symptom management. Several therapeutics, including non-peptide chemicals, antibodies, mimetic peptides and allele-specific small interfering RNAs are promising in treating connexin-related skin disorders. Since connexins play crucial roles in maintaining epidermal homeostasis as shown with linkage to a range of skin disorders and cancer, further investigations are warranted to decipher the molecular and cellular alterations within cells due to mutations or altered expression, leading to abnormal proliferation and differentiation. This would also help characterize the roles of each isoform in skin homeostasis, in addition to the development of innovative therapeutic interventions. This review highlights the critical functions of connexins in the epidermis and the association between connexins and skin disorders, and discusses potential therapeutic options.

2.
Aging (Albany NY) ; 15(22): 12702-12722, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38015712

ABSTRACT

The disturbance of intercellular communication is one of the hallmarks of aging. The goal of this study is to clarify the impact of chronological aging on extracellular vesicles (EVs), a key mode of communication in mammalian tissues. We focused on epidermal keratinocytes, the main cells of the outer protective layer of the skin which is strongly impaired in the skin of elderly. EVs were purified from conditioned medium of primary keratinocytes isolated from infant or aged adult skin. A significant increase of the relative number of EVs released from aged keratinocytes was observed whereas their size distribution was not modified. By small RNA sequencing, we described a specific microRNA (miRNA) signature of aged EVs with an increase abundance of miR-30a, a key regulator of barrier function in human epidermis. EVs from aged keratinocytes were found to be able to reduce the proliferation of young keratinocytes, to impact their organogenesis properties in a reconstructed epidermis model and to slow down the early steps of skin wound healing in mice, three features observed in aged epidermis. This work reveals that intercellular communication mediated by EVs is modulated during aging process in keratinocytes and might be involved in the functional defects observed in aged skin.


Subject(s)
Extracellular Vesicles , MicroRNAs , Aged , Humans , Animals , Mice , MicroRNAs/genetics , Keratinocytes , Epidermis , Aging/genetics , Mammals/genetics
3.
Cells ; 11(5)2022 02 28.
Article in English | MEDLINE | ID: mdl-35269458

ABSTRACT

Chronological aging is characterized by an alteration in the genes' regulatory network. In human skin, epidermal keratinocytes fail to differentiate properly with aging, leading to the weakening of the epidermal function. MiR-30a is particularly overexpressed with epidermal aging, but the downstream molecular mechanisms are still uncovered. The aim of this study was to decipher the effects of miR-30a overexpression in the human epidermis, with a focus on keratinocyte differentiation. We formally identified the mitophagy receptor BNIP3L as a direct target of miR-30a. Using a 3D organotypic model of reconstructed human epidermis overexpressing miR-30a, we observed a strong reduction in BNIP3L expression in the granular layer. In human epidermal sections of skin biopsies from donors of different ages, we observed a similar pattern of BNIP3L decreasing with aging. Moreover, human primary keratinocytes undergoing differentiation in vitro also showed a decreased expression of BNIP3L with age, together with a retention of mitochondria. Moreover, aging is associated with altered mitochondrial metabolism in primary keratinocytes, including decreased ATP-linked respiration. Thus, miR-30a is a negative regulator of programmed mitophagy during keratinocytes terminal differentiation, impairing epidermal homeostasis with aging.


Subject(s)
MicroRNAs , Mitophagy , Aging/genetics , Apoptosis Regulatory Proteins/metabolism , Epidermis/metabolism , Humans , Membrane Proteins/metabolism , MicroRNAs/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Proteins/metabolism
4.
Cells ; 11(5)2022 03 02.
Article in English | MEDLINE | ID: mdl-35269480

ABSTRACT

Chronological aging is defined as a time-dependent decline of tissue homeostasis which severely impacts skin. Understanding the mechanisms of skin aging is an active research area limited by the lack of relevant in vitro models. Being a component of aging, replicative or stress-induced senescence is repeatedly used to mimic skin aging in vitro, thus presenting only a partial view of the complexity of aging. Herein, we aimed to clarify whether primary normal human dermal fibroblasts retained age-related characteristics when cultured in 2D monolayer, and could be used as a relevant model for aging research. We compared three groups of fibroblasts isolated from different aged donors. We observed strongly decreased population doubling capacities, a reduced clonogenic ability, an impairment in extracellular matrix production together with modifications of respiratory metabolism with an increase in age. These disruptions were particularly marked when comparing fibroblasts isolated from old individuals (over 70 years old) to those isolated from young individuals (18-37 years old), while cells from middle-aged donors exhibited an intermediate profile. These alterations of cell features can be related to the signs of dermis aging, thus showing that cultured primary cells indeed retain some characteristics of the original tissue from which they were extracted.


Subject(s)
Dermis , Skin Aging , Adolescent , Adult , Aged , Aging/metabolism , Dermis/metabolism , Fibroblasts/metabolism , Humans , Middle Aged , Skin/metabolism , Young Adult
5.
Biol Rev Camb Philos Soc ; 97(3): 874-895, 2022 06.
Article in English | MEDLINE | ID: mdl-34913582

ABSTRACT

Skin is a key organ maintaining internal homeostasis by performing many functions such as water loss prevention, body temperature regulation and protection from noxious substance absorption, microorganism intrusion and physical trauma. Skin ageing has been well studied and it is well known that physiological changes in the elderly result in higher skin fragility favouring the onset of skin diseases. For example, prolonged and/or high-intensity pressure may suppress local blood flow more easily, disturbing cell metabolism and inducing pressure injury (PI) formation. Pressure injuries (PIs) represent a significant problem worldwide and their prevalence remains too high. A higher PI prevalence is correlated with an elderly population. Newborn skin evolution has been less studied, but some data also report a higher PI prevalence in this population compared to older children, and several authors also consider this skin as physiologically fragile. In this review, we compare the characteristics of newborn and elderly skin in order to determine common features that may explain their fragility, especially regarding PI risk. We show that, despite differences in appearance, they share many common features leading to higher fragility to shear and pressure forces, not only at the structural level but also at the cellular and molecular level and in terms of physiology. Both newborn and elderly skin have: (i) a thinner epidermis; (ii) a thinner dermis containing a less-resistant collagen network, a higher collagen III:collagen I ratio and less elastin; (iii) a flatter dermal-epidermal junction (DEJ) with lower anchoring systems; and (iv) a thinner hypodermis, resulting in lower mechanical resistance to skin damage when pressure or shear forces are applied. At the molecular level, reduced expression of transforming growth factor ß (TGFß) and its receptor TGFß receptor II (TßRII) is involved in the decreased production and/or increased degradation of various dermal extracellular matrix (ECM) components. Epidermal fragility also involves a higher skin pH which decreases the activity of key enzymes inducing ceramide deficiency and reduced barrier protection. This seems to be correlated with higher PI prevalence in some situations. Some data also suggest that stratum corneum (SC) dryness, which may disturb cell metabolism, also increases the risk of PI formation. Besides this structural fragility, several skin functions are also less efficient. Low applied pressures induce skin vessel vasodilation via a mechanism called pressure-induced vasodilation (PIV). Individuals lacking a normal PIV response show an early decrease in cutaneous blood flow in response to the application of very low pressures, reflecting vascular fragility of the skin that increases the risk of ulceration. Due to changes in endothelial function, skin PIV ability decreases during skin ageing, putting it at higher risk of PI formation. In newborns, some data lead us to hypothesize that the nitric oxide (NO) pathway is not fully functional at birth, which may partly explain the higher risk of PI formation in newborns. In the elderly, a lower PIV ability results from impaired functionality of skin innervation, in particular that of C-fibres which are involved in both touch and pain sensation and the PIV mechanism. In newborns, skin sensitivity differs from adults due to nerve system immaturity, but the role of this in PIV remains to be determined.


Subject(s)
Pressure Ulcer , Transforming Growth Factor beta , Vascular Diseases , Adolescent , Adult , Aged , Child , Humans , Infant, Newborn , Collagen , Extracellular Matrix , Skin Physiological Phenomena , Transforming Growth Factor beta/metabolism
6.
Cells ; 10(8)2021 08 05.
Article in English | MEDLINE | ID: mdl-34440765

ABSTRACT

Sarcoidosis is a multisystem disease characterized by the development and accumulation of granulomas, the hallmark of an inflammatory process induced by environmental and/or infectious and or genetic factors. This auto-inflammatory disease mainly affects the lungs, the gateway to environmental aggressions and viral infections. We have shown previously that genetic predisposition to sarcoidosis occurring in familial cases is related to a large spectrum of pathogenic variants with, however, a clustering around mTOR (mammalian Target Of Rapamycin)-related pathways and autophagy regulation. The context of the COVID-19 pandemic led us to evaluate whether such genetic defects may increase the risk of a severe course of SARS-CoV2 infection in patients with sarcoidosis. We extended a whole exome screening to 13 families predisposed to sarcoidosis and crossed the genes sharing mutations with the list of genes involved in the SARS-CoV2 host-pathogen protein-protein interactome. A similar analysis protocol was applied to a series of 100 healthy individuals. Using ENRICH.R, a comprehensive gene set enrichment web server, we identified the functional pathways represented in the set of genes carrying deleterious mutations and confirmed the overrepresentation of autophagy- and mitophagy-related functions in familial cases of sarcoidosis. The same protocol was applied to the set of genes common to sarcoidosis and the SARS-CoV2-host interactome and found a significant enrichment of genes related to mitochondrial factors involved in autophagy, mitophagy, and RIG-I-like (Retinoic Acid Inducible Gene 1) Receptor antiviral response signaling. From these results, we discuss the hypothesis according to which sarcoidosis is a model for studying genetic abnormalities associated with host response to viral infections as a consequence of defects in autophagy and mitophagy processes.


Subject(s)
Autophagy , COVID-19/physiopathology , Sarcoidosis/physiopathology , COVID-19/enzymology , Genomics , Humans , Mitophagy , Protein Serine-Threonine Kinases , Sarcoidosis/enzymology , Exome Sequencing
7.
Skin Res Technol ; 27(6): 1152-1161, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34224600

ABSTRACT

BACKGROUND: Visual and molecular changes occurring upon aging are rather well characterized. Still, aging signs show great significant inter-individual variations, and little is known concerning the link between perceived age and cutaneous microcirculation. MATERIALS AND METHODS: To investigate this point, we recruited Caucasian women in their mid-50's to mid-70's and subsampled women looking older or younger than their age. We studied their facial skin color, as well as their microvascular reactivity to local heating assessed in the forearm skin. We also used skin biopsies from some of these women for gene expression or immunohistochemical analysis. RESULTS: Clinical and instrumental analysis of skin color revealed that subjects who look 5 years younger differ only by a higher glowing complexion. Our most striking result is that subjects looking 5 years younger than their age present a higher microcirculation reactivity in forearm skin. Transcriptome comparison of skin samples from women looking older or younger than their age revealed 123 annotated transcripts differentially expressed, among which MYL9 relates to microcirculation. MYL9 is downregulated in the group of women looking younger than their real age. Microscopy shows that the labeling of MYL9 and CD31 are altered and heterogeneous with age, as is the morphology of microvessels. CONCLUSION: Therefore, assessing generalized vascular reactivity in non-photo-exposed skin to focus on the intrinsic aging allows subtle discrimination of perceived age within elderly healthy subjects.


Subject(s)
Forearm , Microcirculation , Skin Aging , Skin/blood supply , Aged , Face , Female , Forearm/blood supply , Humans
8.
Med Sci (Paris) ; 36(12): 1155-1162, 2020 Dec.
Article in French | MEDLINE | ID: mdl-33296632

ABSTRACT

The skin is a sentinel organ making easily visible the passing of time. Chronological and environmental aging weakens skin structure and functions. The skin barrier, the elastic and mechanical properties of the cutaneous tissue as well as its vascular reactivity are impacted by aging. The barrier dysfunction in aged skin is caused by defects in epidermal keratinocytes renewal and differentiation notably linked to abnormal expression of microRNAs regulating cell death and autophagy. An abnormal balance between synthesis and degradation of matrix proteins modifies the mechanical properties of the dermis in aged skin. Finally, a reduction of the vascular reactivity linked to endothelial dysfunctions is observed in elderly people. These biological processes can be targeted by therapeutic approaches either topical or systemic, especially using anti-oxydants or senolytics. These anti-aging strategies might contribute to restore, at least in part, the functional integrity of aged skin.


TITLE: Vieillissement et intégrité de la peau - De la biologie cutanée aux stratégies anti-âge. ABSTRACT: La peau est un organe sentinelle, soumis au vieillissement chronologique et environnemental qui fragilise sa structure et ses fonctions. La fonction barrière de la peau, ses propriétés élastiques et de résistance, ainsi que sa réactivité vasculaire sont atteintes par le vieillissement dans les compartiments épidermiques, dermiques et vasculaires. Les progrès de la recherche ont permis de révéler des processus biologiques sous-jacents, qui peuvent être ciblés par des approches médicamenteuses topiques ou globales à base notamment d'anti-oxydants ou de sénolytiques. Ces stratégies anti-âge pourront contribuer à restaurer, au moins en partie, l'intégrité fonctionnelle de la peau âgée.


Subject(s)
Aging/physiology , Skin Aging/physiology , Skin Physiological Phenomena , Therapies, Investigational/trends , Aged , Aged, 80 and over , Aging/drug effects , Cosmeceuticals/therapeutic use , Dermatologic Agents/therapeutic use , Epidermis/drug effects , Epidermis/physiology , Humans , Microvessels/drug effects , Microvessels/physiology , Microvessels/physiopathology , Skin/blood supply , Skin/drug effects , Skin/pathology , Skin Aging/drug effects , Skin Aging/pathology , Skin Physiological Phenomena/drug effects , Therapies, Investigational/methods
9.
Front Oncol ; 10: 1551, 2020.
Article in English | MEDLINE | ID: mdl-32850458

ABSTRACT

The nevoid basal cell carcinoma syndrome (NBCCS), also called Gorlin syndrome is an autosomal dominant disorder whose incidence is estimated at about 1 per 55,600-256,000 individuals. It is characterized by several developmental abnormalities and an increased predisposition to the development of basal cell carcinomas (BCCs). Cutaneous fibroblasts from Gorlin patients have been shown to exhibit an increased sensitivity to ionizing radiations. Mutations in the tumor suppressor gene PTCH1, which is part of the Sonic Hedgehog (SHH) signaling pathway, are responsible for these clinical manifestations. As several genetic mutations in the DNA repair genes are responsible of photo or radiosensitivity and high predisposition to cancers, we hypothesized that these effects in Gorlin syndrome might be due to a defect in the DNA damage response (DDR) and/or the DNA repair capacities. Therefore, the objective of this work was to investigate the sensitivity of skin fibroblasts from NBCCS patients to different DNA damaging agents and to determine the ability of these agents to modulate the DNA repair capacities. Gorlin fibroblasts showed high radiosensitivity and also less resistance to oxidative stress-inducing agents when compared to control fibroblasts obtained from healthy individuals. Gorlin fibroblasts harboring PTCH1 mutations were more sensitive to the exposure to ionizing radiation and to UVA. However, no difference in cell viability was shown after exposure to UVB or bleomycin. As BER is responsible for the repair of oxidative DNA damage, we decided to assess the BER pathway efficacy in Gorlin fibroblasts. Interestingly, a concomitant decrease of both BER gene expression and BER protein activity was observed in Gorlin fibroblasts when compared to control. Our results suggest that low levels of DNA repair within Gorlin cells may lead to an accumulation of oxidative DNA damage that could participate and partly explain the radiosensitivity and the BCC-prone phenotype in Gorlin syndrome.

10.
Front Oncol ; 10: 589168, 2020.
Article in English | MEDLINE | ID: mdl-33392083

ABSTRACT

Although it is well established that 5 to 15% of radiotherapy patients exhibit severe side-effects in non-cancerous tissues, the molecular mechanisms involved are still poorly known, and the links between cellular and tissue radiosensitivity are still debated. We here studied fibroblasts from non-irradiated skin of patients with severe sequelae of radiotherapy, to determine whether specific basal cell activities might be involved in susceptibility to side-effects in normal tissues. Compared to control cells, patient fibroblasts exhibited higher radiosensitivity together with defects in DNA repair. Transcriptome profiling of dermal fibroblasts from 16 radiotherapy patients with severe side-effects and 8 healthy individuals identified 540 genes specifically deregulated in the patients. Nuclear factor of activated T cells 2 (NFATC2) was the most differentially expressed gene, poorly expressed at both transcript and protein level, whereas the NFATC2 gene region was hypermethylated. Furthermore, NFATC2 expression correlated with cell survival after irradiation. Finally, silencing NFATC2 in normal cells by RNA interference led to increased cellular radiosensitivity and defects in DNA repair. This study demonstrates that patients with clinical hypersensitivity also exhibit intrinsic cellular radiosensitivity in their normal skin cells. It further reveals a new role for NFATC2 as a potential regulator of cellular sensitivity to ionizing radiation.

11.
Front Cell Dev Biol ; 7: 44, 2019.
Article in English | MEDLINE | ID: mdl-31001530

ABSTRACT

The aim of the present study was to evaluate the impact of the microenvironment produced by dermal microvascular endothelial cells, secondary to a pro-inflammatory challenge, on 2D culture models using dermal fibroblasts and in 3D reconstructed skin model using dermal fibroblasts and keratinocytes from healthy donors. We hypothesized that specific microvascular endothelial low grade inflammation could change fibroblasts phenotype and be involved in extracellular matrix (ECM) modification and skin alteration. Following IFNγ, TNFα, IL-1ß pro-inflammatory stress on Human Dermal Endothelial Cells (HDMEC) we observed the increased release of Chemokine ligand 2 (CCL2), IL-6 and IL-8 but not VEGF-A in the conditioned medium (CM). The subsequent addition of this endothelial pro-inflammatory CM in dermal fibroblasts revealed an upregulation of IL6, IL8 and CCL2 but no NF-κB gene expression. The resulting ECM formation was impaired with a reduction of the collagen 1 network and a decrease in COL1A1 gene expression in 2D and 3D models. Collagen 1 and pro-LOX protein expression were significantly reduced confirming an impairment of the collagen network related to endothelial inflammation secretion. To conclude, this work showed that, without any immune cells, the endothelial secretion in response to a pro-inflammatory stress is able to activate the fibroblasts that will maintain the pro-inflammatory environment and exacerbate ECM degradation.

12.
Int J Radiat Oncol Biol Phys ; 102(2): 417-425, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30191873

ABSTRACT

PURPOSE: Gorlin syndrome (or basal-cell nevus syndrome) is a cancer-prone genetic disease in which hypersusceptibility to secondary cancer and tissue reaction after radiation therapy is debated, as is increased radiosensitivity at cellular level. Gorlin syndrome results from heterozygous mutations in the PTCH1 gene for 60% of patients, and we therefore aimed to highlight correlations between intrinsic radiosensitivity and PTCH1 gene expression in fibroblasts from adult patients with Gorlin syndrome. METHODS AND MATERIALS: The radiosensitivity of fibroblasts from 6 patients with Gorlin syndrome was determined by cell-survival assay after high (0.5-3.5 Gy) and low (50-250 mGy) γ-ray doses. PTCH1 and DNA damage response gene expression was characterized by real-time polymerase chain reaction and Western blotting. DNA damage and repair were investigated by γH2AX and 53BP1 foci assay. PTCH1 knockdown was performed in cells from healthy donors by using stable RNA interference. Gorlin cells were genotyped by 2 complementary sequencing methods. RESULTS: Only cells from patients with Gorlin syndrome who presented severe deficiency in PATCHED1 protein exhibited a significant increase in cellular radiosensitivity, affecting cell responses to both high and low radiation doses. For 2 of the radiosensitive cell strains, heterozygous mutations in the 5' end of PTCH1 gene explain PATCHED1 protein deficiency. In all sensitive cells, DNA damage response pathways (ATM, CHK2, and P53 levels and activation by phosphorylation) were deregulated after irradiation, whereas DSB repair recognition was unimpaired. Furthermore, normal cells with RNA interference-mediated PTCH1 deficiency showed reduced survival after irradiation, directly linking this gene to high- and low-dose radiosensitivity. CONCLUSIONS: In the present study, we show an inverse correlation between PTCH1 expression level and cellular radiosensitivity, suggesting an explanation for the conflicting results previously reported for Gorlin syndrome and possibly providing a basis for prognostic screens for radiosensitive patients with Gorlin syndrome and PTCH1 mutations.


Subject(s)
Basal Cell Nevus Syndrome/genetics , Cancer-Associated Fibroblasts/radiation effects , Patched-1 Receptor/deficiency , Radiation Tolerance/genetics , Adult , Cell Survival/radiation effects , DNA Damage/genetics , DNA Repair/genetics , Female , Histones/genetics , Humans , Male , Middle Aged , Patched-1 Receptor/genetics , Tumor Suppressor p53-Binding Protein 1/genetics
13.
J Dermatol Sci ; 2018 May 05.
Article in English | MEDLINE | ID: mdl-29764717

ABSTRACT

BACKGROUND: Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. OBJECTIVE: The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. METHODS: The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. RESULTS: We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. CONCLUSION: Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede normal cellular functions and contribute to premature skin aging. The present results extend our knowledge of the effects of the low-energy wavelengths that are increasingly used to treat skin disorders.

14.
Aging (Albany NY) ; 9(11): 2376-2396, 2017 11 19.
Article in English | MEDLINE | ID: mdl-29165315

ABSTRACT

The mechanisms affecting epidermal homeostasis during aging remain poorly understood. To identify age-related microRNAs, a class of non-coding RNAs known to play a key role in the regulation of epidermal homeostasis, an exhaustive miRNA expression screen was performed in human keratinocytes from young or elderly subjects. Many microRNAs modulated by aging were identified, including miR-30a, in which both strands were overexpressed in aged cells and epidermal tissue. Stable MiR-30a over-expression strongly impaired epidermal differentiation, inducing severe barrier function defects in an organotypic culture model. A significant increase was also observed in the level of apoptotic cells in epidermis over-expressing miR-30a. Several gene targets of miR-30a were identified in keratinocytes, including LOX (encoding lysyl oxidase, a regulator of the proliferation/differentiation balance of keratinocytes), IDH1 (encoding isocitrate dehydrogenase, an enzyme of cellular metabolism) and AVEN (encoding a caspase inhibitor). Direct regulation of LOX, IDH1 and AVEN by miR-30a was confirmed in human keratinocytes. They were, moreover, observed to be repressed in aged skin, suggesting a possible link between miR-30a induction and skin-aging phenotype. This study revealed a new miRNA actor and deciphered new molecular mechanisms to explain certain alterations observed in epidermis during aging and especially those concerning keratinocyte differentiation and apoptosis.


Subject(s)
Epidermis/metabolism , Gene Expression Profiling/methods , Keratinocytes/metabolism , MicroRNAs/genetics , Oligonucleotide Array Sequence Analysis , Skin Aging/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Age Factors , Aged , Apoptosis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Differentiation , Cells, Cultured , Child , Child, Preschool , Epidermis/pathology , Gene Expression Regulation , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Keratinocytes/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/metabolism , Middle Aged , Permeability , Phenotype , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , Skin Aging/pathology , Time Factors , Transfection , Young Adult
15.
Article in English | MEDLINE | ID: mdl-28243135

ABSTRACT

Human skin is subject to frequent changes in ambient temperature and humidity and needs to cope with these environmental modifications. To decipher the molecular response of human skin to repeated climatic change, a versatile model of skin equivalent subject to "hot-wet" (40°C, 80% relative humidity [RH]) or "cold-dry" (10°C, 40% RH) climatic stress repeated daily was used. To obtain an exhaustive view of the molecular mechanisms elicited by climatic change, large-scale gene expression DNA microarray analysis was performed and modulated function was determined by bioinformatic annotation. This analysis revealed several functions, including epidermal differentiation and extracellular matrix, impacted by repeated variations in climatic conditions. Some of these molecular changes were confirmed by histological examination and protein expression. Both treatments (hot-wet and cold-dry) reduced the expression of genes encoding collagens, laminin, and proteoglycans, suggesting a profound remodeling of the extracellular matrix. Strong induction of the entire family of late cornified envelope genes after cold-dry exposure, confirmed at protein level, was also observed. These changes correlated with an increase in epidermal differentiation markers such as corneodesmosin and a thickening of the stratum corneum, indicating possible implementation of defense mechanisms against dehydration. This study for the first time reveals the complex pattern of molecular response allowing adaption of human skin to repeated change in its climatic environment.

16.
FEBS Open Bio ; 7(2): 149-159, 2017 02.
Article in English | MEDLINE | ID: mdl-28174682

ABSTRACT

Progranulin (PGRN) is a growth factor implicated in several neurodegenerative diseases, such as frontotemporal lobar degeneration. Despite its important role in the central nervous system (CNS), the mechanisms controlling PGRN expression in the CNS are largely unknown. Recent evidence, however, suggested that several stressors, such as hypoxia, acidosis, or oxidative stress, induce PGRN expression. The present study was mainly aimed at determining whether and, if so, how glucose deprivation affects PGRN expression in PC12 cells. Initially, it was found that glucose deprivation gradually induced PGRN gene expression in PC12 cells. To elucidate the underlying molecular mechanisms, several intracellular signalings that were modified in response to glucose deprivation were examined. Both adenosine monophosphate kinase (AMPK) activation and changes in osmotic pressure, which are modified by extracellular glucose concentration, had no effect on PGRN gene expression; on the other hand, p38 activation in response to glucose deprivation played an important role in inducing PGRN gene expression. It was also found that expression of sortilin, a PGRN receptor implicated in PGRN endocytosis, was dramatically reduced by glucose deprivation. In contrast to glucose-dependent regulation of PGRN gene expression, AMPK activation played a central role in reducing sortilin expression. Overall, the present study suggests that the PGRN-sortilin axis is modulated by glucose deprivation via two distinct mechanisms. As PGRN is neuroprotective, this system may represent a new neuroprotective mechanism activated by glucose deprivation in the CNS.

17.
Exp Dermatol ; 26(1): 51-57, 2017 01.
Article in English | MEDLINE | ID: mdl-27306475

ABSTRACT

MicroRNAs (miRNAs) are a class of short non-coding RNAs capable of repressing gene expression at the post-transcriptional level. miRNAs participate in the control of numerous cellular mechanisms, including skin homeostasis and epidermal differentiation. However, few miRNAs involved in these processes have been identified so far in human skin, and the gene networks they control remain largely unknown. Here, we focused on miR-23b-3p, a miRNA that is expressed during the late step of human keratinocyte differentiation. We report that miR-23b-3p silencing modulates epidermal differentiation in human skin reconstructs. The SMAD transcriptional corepressor TGIF1 was identified on bioinformatic analysis as a potential target of miR-23b-3p. Expression analysis and reporter gene assays confirmed direct regulation of TGIF1 expression by miR-23b-3p. Finally, we showed that miR-23-3p was able to activate TGF-ß signalling in human keratinocytes by increasing SMAD2 phosphorylation through TGIF1 repression. Taken together, these data identify miR-23b-3p as a new regulator of human epidermal differentiation in line with TGF-ß signalling.


Subject(s)
Cell Differentiation/genetics , Homeodomain Proteins/genetics , MicroRNAs/genetics , Repressor Proteins/genetics , Signal Transduction/genetics , Smad2 Protein/metabolism , Transforming Growth Factor beta/metabolism , Cells, Cultured , Extracellular Matrix Proteins/genetics , Gene Expression/drug effects , Gene Expression Regulation , Gene Silencing , Homeodomain Proteins/pharmacology , Humans , Keratinocytes/physiology , Phosphorylation , Plasminogen Activator Inhibitor 1/genetics , Repressor Proteins/pharmacology , Transforming Growth Factor beta/genetics
18.
J Virol ; 89(22): 11396-405, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26339055

ABSTRACT

UNLABELLED: Innate immunity is the first line of host defense against infections. Many oncogenic viruses can deregulate several immune-related pathways to guarantee the persistence of the infection. Here, we show that the cutaneous human papillomavirus 38 (HPV38) E6 and E7 oncoproteins suppress the expression of the double-stranded DNA sensor Toll-like receptor 9 (TLR9) in human foreskin keratinocytes (HFK), a key mediator of the antiviral innate immune host response. In particular, HPV38 E7 induces TLR9 mRNA downregulation by promoting accumulation of ΔNp73α, an antagonist of p53 and p73. Inhibition of ΔNp73α expression by antisense oligonucleotide in HPV38 E6/E7 HFK strongly rescues mRNA levels of TLR9, highlighting a key role of ΔNp73α in this event. Chromatin immunoprecipitation experiments showed that ΔNp73α is part of a negative transcriptional regulatory complex with IκB kinase beta (IKKß) that binds to a NF-κB responsive element within the TLR9 promoter. In addition, the Polycomb protein enhancer of zeste homolog 2 (EZH2), responsible for gene expression silencing, is also recruited into the complex, leading to histone 3 trimethylation at lysine 27 (H3K27me3) in the same region of the TLR9 promoter. Ectopic expression of TLR9 in HPV38 E6/E7 cells resulted in an accumulation of the cell cycle inhibitors p21(WAF1) and p27(Kip1), decreased CDK2-associated kinase activity, and inhibition of cellular proliferation. In summary, our data show that HPV38, similarly to other viruses with well-known oncogenic activity, can downregulate TLR9 expression. In addition, they highlight a new role for TLR9 in cell cycle regulation. IMPORTANCE: The mucosal high-risk HPV types have been clearly associated with human carcinogenesis. Emerging lines of evidence suggest the involvement of certain cutaneous HPV types in development of skin squamous cell carcinoma, although this association is still under debate. Oncogenic viruses have evolved different strategies to hijack the host immune system in order to guarantee the persistence of the infection. Their capability to evade the immune system is as important as their ability to promote cellular transformation. Therefore, understanding the viral mechanisms involved in viral persistence is a valid tool to evaluate their potential role in human carcinogenesis. Here, we show that E6 and E7 oncoproteins from the cutaneous HPV38 downregulate the expression of the double-stranded DNA sensor TLR9 of innate immunity. We also present evidence that the HPV38-mediated downregulation of TLR9 expression, in addition to its potential impact on the innate immune response, is linked to cell cycle deregulation.


Subject(s)
Cell Cycle Checkpoints/genetics , Papillomaviridae/metabolism , Papillomavirus E7 Proteins/metabolism , Toll-Like Receptor 9/biosynthesis , Cell Line , Cell Proliferation/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Down-Regulation , Enhancer of Zeste Homolog 2 Protein , Histones/metabolism , Humans , I-kappa B Kinase/metabolism , Keratinocytes/metabolism , Keratinocytes/virology , Methylation , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Polycomb Repressive Complex 2/metabolism , Promoter Regions, Genetic/genetics , RNA Interference , RNA, Messenger/genetics , RNA, Small Interfering , RNA, Viral/genetics , Toll-Like Receptor 9/antagonists & inhibitors , Toll-Like Receptor 9/genetics , p21-Activated Kinases/metabolism
19.
Arthritis Res Ther ; 17: 196, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26227022

ABSTRACT

INTRODUCTION: Transforming growth factor (TGF)-ß and interleukin (IL)-13 play a crucial role in the pathogenesis of systemic sclerosis (SSc), partly through activation of collagen production that leads to fibrosis. The aim of the present study was to determine whether TFG-ß alters IL-13 production in T lymphocytes from patients with SSc from that seen in those of healthy donors. METHODS: IL-13 mRNA and protein synthesis under TFG-ß exposure was measured in circulating T lymphocytes from healthy donors and patients with SSc and also in the Jurkat Th2 T-cell line, using quantitative real-time PCR and fluorescence-activated cell sorting analysis, respectively. The involvement of Smad and GATA-3 transcription factors was assessed by using specific inhibitors and small interfering RNA, and the binding capacity of GATA-3 to the IL-13 gene promoter was evaluated by chromatin immunoprecipitation assay. RESULTS: TGF-ß induced a significant decrease in IL-13 mRNA and protein levels in lymphocytes from healthy donors (mean [±SD] inhibition of 30% ± 10% and 20% ± 7%, respectively; p < 0.05). In contrast, TGF-ß promoted a significant increase in IL-13 mRNA levels and IL-13 synthesis by CD4(+) and CD8(+) T-cell subtypes from patients with SSc, with respective increases of 2.4 ± 0.3-fold, 1.6 ± 0.05-fold and 2.7 ± 0.02-fold. The involvement of the Smad signaling pathway and upregulation of GATA-3 binding capacity on the IL-13 promoter in lymphocytes from patients with SSc contributed to the effect of TGF-ß on IL-13 production. CONCLUSIONS: These results demonstrate that TGF-ß upregulates IL-13 synthesis through GATA-3 expression in the T lymphocytes of patients with SSc, confirming that the GATA-3 transcription factor can be regarded as a novel therapeutic target in patients with SSc.


Subject(s)
GATA3 Transcription Factor/biosynthesis , Interleukin-13/biosynthesis , Scleroderma, Systemic/diagnosis , Scleroderma, Systemic/metabolism , T-Lymphocytes/metabolism , Transforming Growth Factor beta/pharmacology , Adult , Aged , Biomarkers/metabolism , Female , Humans , Jurkat Cells , Male , Middle Aged , T-Lymphocytes/drug effects , Young Adult
20.
Arch Dermatol Res ; 306(2): 201-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24346062

ABSTRACT

GATA3 belongs to the GATA transcription factor family and is a crucial regulator of lymphocyte differentiation. More recently, GATA3 was shown to be involved in skin cell lineage determination, in morphogenesis and maintenance of hair follicle keratinocytes as well as in epidermal barrier formation in mouse. In human, the potential role of GATA3 in the regulation of interfollicular epidermal homeostasis was still poorly explored. We thus investigated whether GATA3 could play a role in the regulation of proliferation and/or differentiation processes in human primary keratinocytes. We silenced the expression of GATA3 by small interfering RNA in either proliferating or differentiated human primary keratinocytes and analyzed the effect on cell proliferation and differentiation. We showed that GATA3 inhibition increased cell number, BrdU incorporation and expression of the proliferation markers PCNA and Ki67, demonstrating that GATA3 can inhibit keratinocyte proliferation. Moreover, GATA3 seems to be able to induce keratinocyte differentiation since its silencing leads to a decrease of both early and late differentiation markers such as Keratins 1 and 10, Involucrin and Loricrin. Our results demonstrate that GATA3 transcription factor inhibits proliferation and induces differentiation of primary keratinocytes, which suggest that it may regulate human interfollicular epidermal renewal.


Subject(s)
Epidermal Cells , GATA3 Transcription Factor/metabolism , Keratinocytes/physiology , Biomarkers/metabolism , Cell Differentiation/genetics , Cell Growth Processes/genetics , Cell Lineage/genetics , Cells, Cultured , GATA3 Transcription Factor/genetics , Gene Expression Regulation/genetics , Humans , Keratin-1/genetics , Keratin-1/metabolism , Keratin-10/genetics , Keratin-10/metabolism , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Protein Precursors/genetics , Protein Precursors/metabolism , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...