Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
BMC Biol ; 21(1): 109, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37189152

ABSTRACT

BACKGROUND: The Western mosquitofish, Gambusia affinis, is a model for sex chromosome organization and evolution of female heterogamety. We previously identified a G. affinis female-specific marker, orthologous to the aminomethyl transferase (amt) gene of the related platyfish (Xiphophorus maculatus). Here, we have analyzed the structure and differentiation of the G. affinis W-chromosome, using a cytogenomics and bioinformatics approach. RESULTS: The long arm of the G. affinis W-chromosome (Wq) is highly enriched in dispersed repetitive sequences, but neither heterochromatic nor epigenetically silenced by hypermethylation. In line with this, Wq sequences are highly transcribed, including an active nucleolus organizing region (NOR). Female-specific SNPs and evolutionary young transposable elements were highly enriched and dispersed along the W-chromosome long arm, suggesting constrained recombination. Wq copy number expanded elements also include female-specific transcribed sequences from the amt locus with homology to TE. Collectively, the G. affinis W-chromosome is actively differentiating by sex-specific copy number expansion of transcribed TE-related elements, but not (yet) by extensive sequence divergence or gene decay. CONCLUSIONS: The G. affinis W-chromosome exhibits characteristic genomic properties of an evolutionary young sex chromosome. Strikingly, the observed sex-specific changes in the genomic landscape are confined to the W long arm, which is separated from the rest of the W-chromosome by a neocentromere acquired during sex chromosome evolution and may thus have become functionally insulated. In contrast, W short arm sequences were apparently shielded from repeat-driven differentiation, retained Z-chromosome like genomic features, and may have preserved pseudo-autosomal properties.


Subject(s)
Cyprinodontiformes , DNA Transposable Elements , Male , Female , Animals , DNA Transposable Elements/genetics , Polymorphism, Single Nucleotide , Sex Chromosomes/genetics , Genomics , Cyprinodontiformes/genetics , Evolution, Molecular
2.
Proc Natl Acad Sci U S A ; 120(2): e2218839120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598951
3.
Proc Biol Sci ; 289(1987): 20221837, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36382515

ABSTRACT

Many fewer women than men hold senior academic positions, a widely recognized and increasing problem. Our goal is to identify effective and feasible solutions. We begin by providing an in-depth assessment of the drivers of this gender inequity. In our synthesis of existing data, we provide many lines of evidence highlighting caregiving as a primary main factor. This is not a 'new' insight per se, but a point worth repeating that we back up by a strong and synthetic body of recent data. We also believe that our analysis provides a step forward in tackling a complex issue. We then develop a more detailed understanding of the challenges academic caregivers face and discuss whether and why it is important to keep caregivers in science. We find that the attrition due to caregiving should not be seen as a factor but rather as a process with multiple 'sticky steps' that eventually drive caregivers out of science-which, as we argue, is partly also good news. Indeed, it is here that we believe actions could be taken that would have a real impact: for example, one could effectively increase and expand upon current funding practices that focus on caregiver career advancement.


Subject(s)
Caregivers , Male , Humans , Female , Sex Factors
5.
Nat Commun ; 13(1): 4092, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35835759

ABSTRACT

Understanding genome evolution of polyploids requires dissection of their often highly similar subgenomes and haplotypes. Polyploid animal genome assemblies so far restricted homologous chromosomes to a 'collapsed' representation. Here, we sequenced the genome of the asexual Prussian carp, which is a close relative of the goldfish, and present a haplotype-resolved chromosome-scale assembly of a hexaploid animal. Genome-wide comparisons of the 150 chromosomes with those of two ancestral diploid cyprinids and the allotetraploid goldfish and common carp revealed the genomic structure, phylogeny and genome duplication history of its genome. It consists of 25 syntenic, homeologous chromosome groups and evolved by a recent autoploid addition to an allotetraploid ancestor. We show that de-polyploidization of the alloploid subgenomes on the individual gene level occurred in an equilibrated fashion. Analysis of the highly conserved actinopterygian gene set uncovered a subgenome dominance in duplicate gene loss of one ancestral chromosome set.


Subject(s)
Carps , Polyploidy , Animals , Carps/genetics , Diploidy , Evolution, Molecular , Genome , Genome, Plant , Haplotypes , Phylogeny
6.
Genome Biol Evol ; 13(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34599322

ABSTRACT

Genome sizes of eukaryotic organisms vary substantially, with whole-genome duplications (WGD) and transposable element expansion acting as main drivers for rapid genome size increase. The two North American mudminnows, Umbra limi and Umbra pygmaea, feature genomes about twice the size of their sister lineage Esocidae (e.g., pikes and pickerels). However, it is unknown whether all Umbra species share this genome expansion and which causal mechanisms drive this expansion. Using flow cytometry, we find that the genome of the European mudminnow is expanded similarly to both North American species, ranging between 4.5 and 5.4 pg per diploid nucleus. Observed blocks of interstitially located telomeric repeats in U. limi suggest frequent Robertsonian rearrangements in its history. Comparative analyses of transcriptome and genome assemblies show that the genome expansion in Umbra is driven by the expansion of DNA transposon and unclassified repeat sequences without WGD. Furthermore, we find a substantial ongoing expansion of repeat sequences in the Alaska blackfish Dallia pectoralis, the closest relative to the family Umbridae, which might mark the beginning of a similar genome expansion. Our study suggests that the genome expansion in mudminnows, driven mainly by transposon expansion, but not WGD, occurred before the separation into the American and European lineage.


Subject(s)
Umbridae , Animals , DNA Transposable Elements/genetics , Genome Size , Umbridae/genetics
7.
Philos Trans R Soc Lond B Biol Sci ; 376(1832): 20200089, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34247507

ABSTRACT

Several hypotheses explain the prevalence of undifferentiated sex chromosomes in poikilothermic vertebrates. Turnovers change the master sex determination gene, the sex chromosome or the sex determination system (e.g. XY to WZ). Jumping master genes stay main triggers but translocate to other chromosomes. Occasional recombination (e.g. in sex-reversed females) prevents sex chromosome degeneration. Recent research has uncovered conserved heteromorphic or even homomorphic sex chromosomes in several clades of non-avian and non-mammalian vertebrates. Sex determination in sturgeons (Acipenseridae) has been a long-standing basic biological question, linked to economical demands by the caviar-producing aquaculture. Here, we report the discovery of a sex-specific sequence from sterlet (Acipenser ruthenus). Using chromosome-scale assemblies and pool-sequencing, we first identified an approximately 16 kb female-specific region. We developed a PCR-genotyping test, yielding female-specific products in six species, spanning the entire phylogeny with the most divergent extant lineages (A. sturio, A. oxyrinchus versus A. ruthenus, Huso huso), stemming from an ancient tetraploidization. Similar results were obtained in two octoploid species (A. gueldenstaedtii, A. baerii). Conservation of a female-specific sequence for a long period, representing 180 Myr of sturgeon evolution, and across at least one polyploidization event, raises many interesting biological questions. We discuss a conserved undifferentiated sex chromosome system with a ZZ/ZW-mode of sex determination and potential alternatives. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.


Subject(s)
Evolution, Molecular , Fishes/genetics , Genome , Sex Chromosomes/genetics , Sex Determination Processes/genetics , Animals , Female , Phylogeny
8.
Philos Trans R Soc Lond B Biol Sci ; 376(1833): 20200103, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34304588

ABSTRACT

We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.


Subject(s)
Genetic Speciation , Hybridization, Genetic , Meiosis , Polyploidy , Sex Chromosomes/genetics , Vertebrates/genetics , Animals
9.
Mol Biol Evol ; 38(9): 3581-3592, 2021 08 23.
Article in English | MEDLINE | ID: mdl-33885820

ABSTRACT

How does asexual reproduction influence genome evolution? Although is it clear that genomic structural variation is common and important in natural populations, we know very little about how one of the most fundamental of eukaryotic traits-mode of genomic inheritance-influences genome structure. We address this question with the New Zealand freshwater snail Potamopyrgus antipodarum, which features multiple separately derived obligately asexual lineages that coexist and compete with otherwise similar sexual lineages. We used whole-genome sequencing reads from a diverse set of sexual and asexual individuals to analyze genomic abundance of a critically important gene family, rDNA (the genes encoding rRNAs), that is notable for dynamic and variable copy number. Our genomic survey of rDNA in P. antipodarum revealed two striking results. First, the core histone and 5S rRNA genes occur between tandem copies of the 18S-5.8S-28S gene cluster, a unique architecture for these crucial gene families. Second, asexual P. antipodarum harbor dramatically more rDNA-histone copies than sexuals, which we validated through molecular and cytogenetic analysis. The repeated expansion of this genomic region in asexual P. antipodarum lineages following distinct transitions to asexuality represents a dramatic genome structural change associated with asexual reproduction-with potential functional consequences related to the loss of sexual reproduction.


Subject(s)
Genome , Histones , Animals , Genomics , Histones/genetics , Humans , Reproduction, Asexual/genetics , Snails/genetics
10.
Genetics ; 214(1): 193-209, 2020 01.
Article in English | MEDLINE | ID: mdl-31704715

ABSTRACT

Fish are known for the outstanding variety of their sex determination mechanisms and sex chromosome systems. The western (Gambusia affinis) and eastern mosquitofish (G. holbrooki) are sister species for which different sex determination mechanisms have been described: ZZ/ZW for G. affinis and XX/XY for G. holbrooki Here, we carried out restriction-site associated DNA (RAD-) and pool sequencing (Pool-seq) to characterize the sex chromosomes of both species. We found that the ZW chromosomes of G. affinis females and the XY chromosomes of G. holbrooki males correspond to different linkage groups, and thus evolved independently from separate autosomes. In interspecific hybrids, the Y chromosome is dominant over the W chromosome, and X is dominant over Z. In G. holbrooki, we identified a candidate region for the Y-linked melanic pigmentation locus, a rare male phenotype that constitutes a potentially sexually antagonistic trait and is associated with other such characteristics, e.g., large body size and aggressive behavior. We developed a SNP-based marker in the Y-linked allele of GIPC PDZ domain containing family member 1 (gipc1), which was linked to melanism in all tested G. holbrooki populations. This locus represents an example for a color locus that is located in close proximity to a putative sex determiner, and most likely substantially contributed to the evolution of the Y.


Subject(s)
46, XX Testicular Disorders of Sex Development/genetics , Cyprinodontiformes/genetics , Pigmentation/genetics , Sex Chromosomes , Sex Determination Processes , X Chromosome , Y Chromosome , Animals , Cell Lineage , Chromosome Mapping , Cyprinodontiformes/classification , Female , Genetic Linkage , Genome , Male , Phenotype , Phylogeny
11.
PLoS One ; 13(11): e0207264, 2018.
Article in English | MEDLINE | ID: mdl-30485324

ABSTRACT

Zebrafish larvae (Danio rerio) are among the most used model species to test biological effects of different substances in biomedical research, neuroscience and ecotoxicology. Most tests are based on changes in swimming activity of zebrafish larvae by using commercially available high-throughput screening systems. These systems record and analyse behaviour patterns using visible (VIS) and near-infrared (NIR) light sources, to simulate day (VIS) and night (NIR) phases, which allow continuous recording of the behaviour using a NIR sensitive camera. So far, however, the sensitivity of zebrafish larvae to NIR has never been tested experimentally, although being a critical piece of information for interpreting their behaviour under experimental conditions. Here, we investigated the swimming activity of 96 hpf (hours post fertilization) and 120 hpf zebrafish larvae under light sources of NIR at 860 nm and at 960 nm wavelength and under VIS light. A thermal source was simultaneously presented opposite to one of the light sources as control. We found that zebrafish larvae of both larval stages showed a clear negative phototactic response towards 860 nm NIR light and to VIS light, but not to 960 nm NIR light. Our results demonstrated that zebrafish larvae are able to perceive NIR at 860 nm, which is almost identical to the most commonly used light source in commercial screening systems (NIR at 850 nm) to create a dark environment. These tests, however, are not performed in the dark from the zebrafish´s point of view. We recommend testing sensitivity of the used test organism before assuming no interaction with the applied light source of commonly used biosensor test systems. Previous studies on biological effects of substances to zebrafish larvae should be interpreted with caution.


Subject(s)
Phototaxis/physiology , Zebrafish/physiology , Animals , Ecotoxicology , Infrared Rays , Larva/physiology , Light , Motor Activity , Swimming
12.
Genes (Basel) ; 9(3)2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29518021

ABSTRACT

Transitions from sexual to asexual reproduction are often associated with polyploidy and increased chromosomal plasticity in asexuals. We investigated chromosomes in the freshwater ostracod species Eucypris virens (Jurine, 1820), where sexual, asexual and mixed populations can be found. Our initial karyotyping of multiple populations from Europe and North Africa, both sexual and asexual, revealed a striking variability in chromosome numbers. This would suggest that chromosomal changes are likely to be accelerated in asexuals because the constraints of meiosis are removed. Hence, we employed comparative genomic hybridization (CGH) within and among sexual and asexual populations to get insights into E. virens genome arrangements. CGH disclosed substantial genomic imbalances among the populations analyzed, and three patterns of genome arrangement between these populations: 1. Only putative ribosomal DNA (rDNA)-bearing regions were conserved in the two populations compared indicating a high sequence divergence between these populations. This pattern is comparable with our findings at the interspecies level of comparison; 2. Chromosomal regions were shared by both populations to a varying extent with a distinct copy number variation in pericentromeric and presumable rDNA-bearing regions. This indicates a different rate of evolution in repetitive sequences; 3. A mosaic pattern of distribution of genomic material that can be explained as non-reciprocal genetic introgression and evidence of a hybrid origin of these individuals. We show an overall increased chromosomal dynamics in E. virens that is complementary with available phylogenetic and population genetic data reporting highly differentiated diploid sexual and asexual lineages with a wide variety of genetic backgrounds.

13.
PLoS One ; 10(2): e0118214, 2015.
Article in English | MEDLINE | ID: mdl-25707007

ABSTRACT

Sex-specific markers are a prerequisite for understanding reproductive biology, genetic factors involved in sex differences, mechanisms of sex determination, and ultimately the evolution of sex chromosomes. The Western mosquitofish, Gambusia affinis, may be considered a model species for sex-chromosome evolution, as it displays female heterogamety (ZW/ZZ), and is also ecologically interesting as a worldwide invasive species. Here, de novo RNA-sequencing on the gonads of sexually mature G. affinis was used to identify contigs that were highly transcribed in females but not in males (i.e., transcripts with ovary-specific expression). Subsequently, 129 primer pairs spanning 79 contigs were tested by PCR to identify sex-specific transcripts. Of those primer pairs, one female-specific DNA marker was identified, Sanger sequenced and subsequently validated in 115 fish. Sequence analyses revealed a high similarity between the identified sex-specific marker and the 3´ UTR of the aminomethyl transferase (amt) gene of the closely related platyfish (Xiphophorus maculatus). This is the first time that RNA-seq has been used to successfully characterize a sex-specific marker in a fish species in the absence of a genome map. Additionally, the identified sex-specific marker represents one of only a handful of such markers in fishes.


Subject(s)
Cyprinodontiformes/genetics , Genetic Markers/genetics , Sex Determination Processes/genetics , Transcriptome/genetics , Animals , DNA Primers/genetics , Female , Male , Phylogeny , Sequence Analysis, RNA/methods , Sex Chromosomes/genetics , Sex Determination Analysis/methods
14.
Evolution ; 64(4): 944-59, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-19863582

ABSTRACT

The rise and consequences of polyploidy in vertebrates, whose origin was associated with genome duplications, may be best studied in natural diploid and polyploid populations. In a diploid/tetraploid (2n/4n) geographic contact zone of Palearctic green toads in northern Kyrgyzstan, we examine 4ns and triploids (3n) of unknown genetic composition and origins. Using mitochondrial and nuclear sequence, and nuclear microsatellite markers in 84 individuals, we show that 4n (Bufo pewzowi) are allopolyploids, with a geographically proximate 2n species (B. turanensis) being their maternal ancestor and their paternal ancestor as yet unidentified. Local 3n forms arise through hybridization. Adult 3n mature males (B. turanensis mtDNA) have 2n mothers and 4n fathers, but seem distinguishable by nuclear profiles from partly aneuploid 3n tadpoles (with B. pewzowi mtDNA). These observations suggest multiple pathways to the formation of triploids in the contact zone, involving both reciprocal origins. To explain the phenomena in the system, we favor a hypothesis where 3n males (with B. turanensis mtDNA) backcross with 4n and 2n females. Together with previous studies of a separately evolved, sexually reproducing 3n lineage, these observations reveal complex reproductive interactions among toads of different ploidy levels and multiple pathways to the evolution of polyploid lineages.


Subject(s)
Bufonidae/genetics , Diploidy , Evolution, Molecular , Hybridization, Genetic , Polyploidy , Alleles , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Female , Genetics, Population , Genome , Geography , Kyrgyzstan , Male , Microsatellite Repeats , Reproduction
15.
Evolution ; 64(4): 986-97, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-19863586

ABSTRACT

Transitions from sexual to asexual reproduction are often coupled with elevations in ploidy. As a consequence, the importance of ploidy per se for the maintenance and spread of asexual populations is unclear. To examine the effects of ploidy and asexual reproduction as independent determinants of the success of asexual lineages, we sampled diploid sexual, diploid asexual, and triploid asexual Eucypris virens ostracods across a European wide range. Applying nuclear and mitochondrial markers, we found that E. virens consists of genetically highly differentiated diploid sexual populations, to the extent that these sexual clades could be considered as cryptic species. All sexual populations were found in southern Europe and North Africa and we found that both diploid asexual and triploid asexual lineages have originated multiple times from several sexual lineages. Therefore, the asexual lineages show a wide variety of genetic backgrounds and very strong population genetic structure across the wide geographic range. Finally, we found that triploid, but not diploid, asexual clones dominate habitats in northern Europe. The limited distribution of diploid asexual lineages, despite their shared ancestry with triploid asexual lineages, strongly suggests that the wider geographic distribution of triploids is due to elevated ploidy rather than to asexuality.


Subject(s)
Crustacea/physiology , Diploidy , Parthenogenesis , Polyploidy , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Female , Genetic Variation , Geography , Isoenzymes , Male , Population Dynamics
16.
BMC Evol Biol ; 8: 88, 2008 Mar 19.
Article in English | MEDLINE | ID: mdl-18366680

ABSTRACT

BACKGROUND: The Amazon molly (Poecilia formosa) is a small unisexual fish that has been suspected of being threatened by extinction from the stochastic accumulation of slightly deleterious mutations that is caused by Muller's ratchet in non-recombining populations. However, no detailed quantification of the extent of this threat is available. RESULTS: Here we quantify genomic decay in this fish by using a simple model of Muller's ratchet with the most realistic parameter combinations available employing the evolution@home global computing system. We also describe simple extensions of the standard model of Muller's ratchet that allow us to deal with selfing diploids, triploids and mitotic recombination. We show that Muller's ratchet creates a threat of extinction for the Amazon molly for many biologically realistic parameter combinations. In most cases, extinction is expected to occur within a time frame that is less than previous estimates of the age of the species, leading to a genomic decay paradox. CONCLUSION: How then does the Amazon molly survive? Several biological processes could individually or in combination solve this genomic decay paradox, including paternal leakage of undamaged DNA from sexual sister species, compensatory mutations and many others. More research is needed to quantify the contribution of these potential solutions towards the survival of the Amazon molly and other (ancient) asexual species.


Subject(s)
Biological Evolution , Diploidy , Extinction, Biological , Models, Genetic , Mutation , Poecilia/genetics , Animals , Conservation of Natural Resources , Genomic Instability , Reproduction, Asexual , Stochastic Processes
17.
J Hered ; 99(2): 223-6, 2008.
Article in English | MEDLINE | ID: mdl-18209110

ABSTRACT

Polyploidization is thought to be an important driving force in evolution as it increases the genetic material on which mutation and selection can act. In the Amazon molly, Poecilia formosa, triploid genotypes can be found in the field and frequently arise from diploid breeding stocks, a tetraploid individual, however, was so far never documented. Here, we report the first tetraploid Amazon molly. Flow cytometry clearly showed the tetraploid DNA content, whereas microsatellite analysis not only confirmed the tetraploidy but also pointed to allotetraploidy. Most likely the fourth genome was received through paternal leakage, namely, by fertilization of a triploid egg with a haploid sperm. The existence of tetraploid individuals offers new explanations for the enormous clonal diversity observed in wild populations of P. formosa.


Subject(s)
Poecilia/genetics , Polyploidy , Animals , Flow Cytometry , Polymerase Chain Reaction , South America
18.
Curr Biol ; 17(22): 1948-53, 2007 Nov 20.
Article in English | MEDLINE | ID: mdl-17980594

ABSTRACT

Automixis, the process whereby the fusion of meiotic products restores the diploid state of the egg, is a common mode of reproduction in plants but has also been described in invertebrate animals. In vertebrates, however, automixis has so far only been discussed as one of several explanations for isolated cases of facultative parthenogenesis. Analyzing oocyte formation in F1 hybrids derived from Poecilia mexicana limantouri and P. latipinna crosses (the cross that led to the formation of the gynogenetic Poecilia formosa), we found molecular evidence for automictic oocyte production. The mechanism involves the random fusion of meiotic products after the second meiotic division. The fertilization of diploid oocytes gives rise to fully viable triploid offspring. Although the automictic production of diploid oocytes as seen in these F1 hybrids clearly represents a preadaptation to parthenogenetic reproduction, it is also a powerful intrinsic postzygotic isolation mechanism because the resulting next generation triploids were always sterile. The mechanism described here can explain facultative parthenogenesis, as well as varying ploidy levels reported in different animal groups. Most importantly, at least some of the reported cases of triploidy in humans can now be traced back to automixis.


Subject(s)
Hybridization, Genetic , Parthenogenesis/genetics , Poecilia/genetics , Polyploidy , Animals , Crosses, Genetic , Female , Male , Ovum , Poecilia/physiology
19.
Genetics ; 177(2): 917-26, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17720916

ABSTRACT

B chromosomes are additional, usually unstable constituents of the genome of many organisms. Their origin, however, is often unclear and their evolutionary relevance is not well understood. They may range from being deleterious to neutral or even beneficial. We have followed the genetic fate of B chromosomes in the asexual, all-female fish Poecilia formosa over eight generations. In this species, B chromosomes come in the form of one to three tiny microchromosomes derived from males of the host species that serve as sperm donors for this gynogenetic species. All microchromosomes have centromeric heterochromatin but usually only one has a telomere. Such microchromosomes are stably inherited, while the telomereless are prone to be lost in both the soma and germline. In some cases the stable microchromosome carries a functional gene lending support to the hypothesis that the B chromosomes in P. formosa could increase the genetic diversity of the clonal lineage in this ameiotic organism and to some degree counteract the genomic decay that is supposed to be connected with the lack of recombination.


Subject(s)
Chromosomes , Poecilia/genetics , Reproduction, Asexual , Animals , Evolution, Molecular , Female , Genetic Variation , Male
20.
Front Zool ; 4: 13, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17504521

ABSTRACT

BACKGROUND: Unisexuality, or all female reproduction, is rare among vertebrates. Studying these exceptional organisms may give useful information with respect to the evolution and maintenance of sexual reproduction. Poecilia formosa was the first unisexual vertebrate species to be detected and since then has served as a paradigmatic organism for unisexuality and studies on the evolution of sex. It reproduces through gynogenesis, using sperm of males from related species to trigger parthenogenetic development of the unreduced diploid eggs. Like in other unisexual vertebrates, triploids occur in a certain range of P. formosa. It has been suggested that the addition of the host species derived third chromosome set is evolutionary important. Clonal organisms lack sufficient genotypic diversity for adaptive changes to variable environments. Also non-recombining genomes cannot purge deleterious mutations and therefore unisexual organisms should suffer from a genomic decay. Thus, polyploidization leading to triploidy should bring "fresh" genetic material into the asexual lineage. To evaluate the importance of triploidy for maintaining the asexual species, it is important to know whether such an introgression event happens at a reasonable frequency. RESULTS: In an earlier study it was found that all triploid P. formosa in the Rio Purificación river system are of monophyletic origin. Here we have analyzed fish from a different river system. Using microsatellite analysis we can show that the triploids from this new location are genetically divergent and most probably of an independent origin. CONCLUSION: Our data support the hypothesis that triploidy was not a single chance event in the evolutionary history of P. formosa and hence might be a relevant mechanism to increase genotypic divergence and at least partially counteract the genetic degeneration connected to asexuality. It is, however, much rarer than in other asexual vertebrates analyzed so far and thus probably only of moderate evolutionary importance for the maintenance of the asexual breeding complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...