Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Med Chem ; 67(2): 1500-1512, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38227216

ABSTRACT

Casitas B-lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, has been demonstrated to play a central role in regulating effector T-cell function. Multiple studies using gene-targeting approaches have provided direct evidence that Cbl-b negatively regulates T, B, and NK cell activation via a ubiquitin-mediated protein modulation. Thus, inhibition of Cbl-b ligase activity can lead to immune activation and has therapeutic potential in immuno-oncology. Herein, we describe the discovery and optimization of an arylpyridone series as Cbl-b inhibitors by structure-based drug discovery to afford compound 31. This compound binds to Cbl-b with an IC50 value of 30 nM and induces IL-2 production in T-cells with an EC50 value of 230 nM. Compound 31 also shows robust intracellular target engagement demonstrated through inhibition of Cbl-b autoubiquitination, inhibition of ubiquitin transfer to ZAP70, and the cellular modulation of phosphorylation of a downstream signal within the TCR axis.


Subject(s)
Proto-Oncogene Proteins c-cbl , Ubiquitin-Protein Ligases , Proto-Oncogene Proteins c-cbl/metabolism , Ubiquitin-Protein Ligases/metabolism , T-Lymphocytes/metabolism , Phosphorylation , Ubiquitin/metabolism
2.
ACS Med Chem Lett ; 14(12): 1848-1856, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116444

ABSTRACT

Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) is a RING finger E3 ligase that is responsible for repressing T-cell, natural killer (NK) cell, and B-cell activation. The robust antitumor activity observed in Cbl-b deficient mice arising from elevated T-cell and NK-cell activity justified our discovery effort toward Cbl-b inhibitors that might show therapeutic promise in immuno-oncology, where activation of the immune system can drive the recognition and killing of cancer cells. We undertook a high-throughput screening campaign followed by structure-enabled optimization to develop a novel benzodiazepine series of potent Cbl-b inhibitors. This series displayed nanomolar levels of biochemical potency, as well as potent T-cell activation. The functional activity of this class of Cbl-b inhibitors was further corroborated with ubiquitin-based cellular assays.

3.
J Med Chem ; 66(13): 8782-8807, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37343272

ABSTRACT

Recent clinical reports have highlighted the need for wild-type (WT) and mutant dual inhibitors of c-MET kinase for the treatment of cancer. We report herein a novel chemical series of ATP competitive type-III inhibitors of WT and D1228V mutant c-MET. Using a combination of structure-based drug design and computational analyses, ligand 2 was optimized to a highly selective chemical series with nanomolar activities in biochemical and cellular settings. Representatives of the series demonstrate excellent pharmacokinetic profiles in rat in vivo studies with promising free-brain exposures, paving the way for the design of brain permeable drugs for the treatment of c-MET driven cancers.


Subject(s)
Antineoplastic Agents , Neoplasms , Rats , Animals , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met , Drug Design , Adenosine Triphosphate , Antineoplastic Agents/pharmacology
4.
SLAS Technol ; 27(3): 209-213, 2022 06.
Article in English | MEDLINE | ID: mdl-35058193

ABSTRACT

In laboratories with multiple identical analytical instruments and consistent sample workflows, analysts frequently perform repetitive software control steps, yet automation options in vendor-supplied instrument software are generally limited and may not support the desired laboratory workflow. Scripts that automate tasks to monitor systems, streamline worklist creation, or minimize downtime can save valuable personnel time and reduce errors. AutoHotkey is a free, open-source scripting language for Windows that allows users with no programming experience to easily create scripts automating a wide variety of activities. The scripts automate the tasks that a user performs while interacting with the instrument control software, such as mouse clicks and keyboard entries and closing software windows, rather than modify the underlying instrument software, and thus these scripts are compatible with multiple vendor software packages and Windows OS versions. The scripts can be triggered manually from a desktop icon or automatically through Windows Task Scheduler.


Subject(s)
Laboratories , Software , Automation , Workflow
5.
ACS Chem Biol ; 17(1): 54-67, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34955012

ABSTRACT

Cyclin-dependent-kinases (CDKs) are members of the serine/threonine kinase family and are highly regulated by cyclins, a family of regulatory subunits that bind to CDKs. CDK9 represents one of the most studied examples of these transcriptional CDKs. CDK9 forms a heterodimeric complex with its regulatory subunit cyclins T1, T2 and K to form the positive transcription elongation factor b (P-TEFb). This complex regulates transcription via the phosphorylation of RNA polymerase II (RNAPolII) on Ser-2, facilitating promoter clearance and transcription elongation and thus remains an attractive therapeutic target. Herein, we have utilized classical affinity purification chemical proteomics, kinobeads assay, compressed CEllular Thermal Shift Assay (CETSA)-MS and Limited Proteolysis (LiP) to study the selectivity, target engagement and downstream mechanistic insights of a CDK9 tool compound. The above experiments highlight the value of quantitative mass spectrometry approaches to drug discovery, specifically proteome wide target identification and selectivity profiling. The approaches utilized in this study unanimously indicated that the CDK family of kinases are the main target of the compound of interest, with CDK9, showing the highest target affinity with remarkable consistency across approaches. We aim to provide guidance to the scientific community on the available chemical biology/proteomic tools to study advanced lead molecules and to highlight pros and cons of each technology while describing our findings in the context of the CDKs biology.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Proteomics , Cell Line, Tumor , Chemical Fractionation , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Humans , Mass Spectrometry
6.
J Med Chem ; 64(20): 15189-15213, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34647738

ABSTRACT

Optimization of a series of azabenzimidazoles identified from screening hit 2 and the information gained from a co-crystal structure of the azabenzimidazole-based lead 6 bound to CDK9 led to the discovery of azaindoles as highly potent and selective CDK9 inhibitors. With the goal of discovering a highly selective and potent CDK9 inhibitor administrated intravenously that would enable transient target engagement of CDK9 for the treatment of hematological malignancies, further optimization focusing on physicochemical and pharmacokinetic properties led to azaindoles 38 and 39. These compounds are highly potent and selective CDK9 inhibitors having short half-lives in rodents, suitable physical properties for intravenous administration, and the potential to achieve profound but transient inhibition of CDK9 in vivo.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Discovery , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Cyclin-Dependent Kinase 9/metabolism , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
8.
J Med Chem ; 63(24): 15564-15590, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33306391

ABSTRACT

A CDK9 inhibitor having short target engagement would enable a reduction of Mcl-1 activity, resulting in apoptosis in cancer cells dependent on Mcl-1 for survival. We report the optimization of a series of amidopyridines (from compound 2), focusing on properties suitable for achieving short target engagement after intravenous administration. By increasing potency and human metabolic clearance, we identified compound 24, a potent and selective CDK9 inhibitor with suitable predicted human pharmacokinetic properties to deliver transient inhibition of CDK9. Furthermore, the solubility of 24 was considered adequate to allow i.v. formulation at the anticipated effective dose. Short-term treatment with compound 24 led to a rapid dose- and time-dependent decrease of pSer2-RNAP2 and Mcl-1, resulting in cell apoptosis in multiple hematological cancer cell lines. Intermittent dosing of compound 24 demonstrated efficacy in xenograft models derived from multiple hematological tumors. Compound 24 is currently in clinical trials for the treatment of hematological malignancies.


Subject(s)
Cyclin-Dependent Kinase 9/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Animals , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Cyclin-Dependent Kinase 9/metabolism , Dogs , Drug Evaluation, Preclinical , Half-Life , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/pathology , Humans , Mice , Molecular Docking Simulation , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Rats , Solubility , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
J Med Chem ; 62(21): 9418-9437, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31361481

ABSTRACT

The three-dimensional conformations adopted by a free ligand in solution impact bioactivity and physicochemical properties. Solution 1D NMR spectra inherently contain information on ligand conformational flexibility and three-dimensional shape, as well as the propensity of the free ligand to fully preorganize into the bioactive conformation. Herein we discuss some key learnings, distilled from our experience developing potent and selective synthetic macrocyclic inhibitors, including Mcl-1 clinical candidate AZD5991. Case studies have been selected from recent oncology research projects, demonstrating how 1D NMR conformational signatures can complement X-ray protein-ligand structural information to guide medicinal chemistry optimization. Learning to extract free ligand conformational information from routinely available 1D NMR signatures has proven to be fast enough to guide medicinal chemistry decisions within design cycles for compound optimization.


Subject(s)
Drug Design , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Kinetics , Ligands , Macrocyclic Compounds/chemical synthesis , Magnetic Resonance Spectroscopy , Models, Molecular , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Protein Conformation , Structure-Activity Relationship
10.
Nat Commun ; 9(1): 5341, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559424

ABSTRACT

Mcl-1 is a member of the Bcl-2 family of proteins that promotes cell survival by preventing induction of apoptosis in many cancers. High expression of Mcl-1 causes tumorigenesis and resistance to anticancer therapies highlighting the potential of Mcl-1 inhibitors as anticancer drugs. Here, we describe AZD5991, a rationally designed macrocyclic molecule with high selectivity and affinity for Mcl-1 currently in clinical development. Our studies demonstrate that AZD5991 binds directly to Mcl-1 and induces rapid apoptosis in cancer cells, most notably myeloma and acute myeloid leukemia, by activating the Bak-dependent mitochondrial apoptotic pathway. AZD5991 shows potent antitumor activity in vivo with complete tumor regression in several models of multiple myeloma and acute myeloid leukemia after a single tolerated dose as monotherapy or in combination with bortezomib or venetoclax. Based on these promising data, a Phase I clinical trial has been launched for evaluation of AZD5991 in patients with hematological malignancies (NCT03218683).


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Multiple Myeloma/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Animals , Bortezomib/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Mice, SCID , Multiple Myeloma/pathology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Rats , Rats, Nude , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
11.
Cancer Res ; 78(23): 6691-6702, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30297535

ABSTRACT

: PARP proteins represent a class of post-translational modification enzymes with diverse cellular functions. Targeting PARPs has proven to be efficacious clinically, but exploration of the therapeutic potential of PARP inhibition has been limited to targeting poly(ADP-ribose) generating PARP, including PARP1/2/3 and tankyrases. The cancer-related functions of mono(ADP-ribose) generating PARP, including PARP6, remain largely uncharacterized. Here, we report a novel therapeutic strategy targeting PARP6 using the first reported PARP6 inhibitors. By screening a collection of PARP compounds for their ability to induce mitotic defects, we uncovered a robust correlation between PARP6 inhibition and induction of multipolar spindle (MPS) formation, which was phenocopied by PARP6 knockdown. Treatment with AZ0108, a PARP6 inhibitor with a favorable pharmacokinetic profile, potently induced the MPS phenotype, leading to apoptosis in a subset of breast cancer cells in vitro and antitumor effects in vivo. In addition, Chk1 was identified as a specific substrate of PARP6 and was further confirmed by enzymatic assays and by mass spectrometry. Furthermore, when modification of Chk1 was inhibited with AZ0108 in breast cancer cells, we observed marked upregulation of p-S345 Chk1 accompanied by defects in mitotic signaling. Together, these results establish proof-of-concept antitumor efficacy through PARP6 inhibition and highlight a novel function of PARP6 in maintaining centrosome integrity via direct ADP-ribosylation of Chk1 and modulation of its activity. SIGNIFICANCE: These findings describe a new inhibitor of PARP6 and identify a novel function of PARP6 in regulating activation of Chk1 in breast cancer cells.


Subject(s)
ADP Ribose Transferases/antagonists & inhibitors , Breast Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Spindle Apparatus/drug effects , Spindle Apparatus/metabolism , Animals , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Checkpoint Kinase 1/metabolism , Disease Models, Animal , Female , Humans , Mice , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Signal Transduction/drug effects , Substrate Specificity , Xenograft Model Antitumor Assays
12.
Expert Opin Drug Discov ; 13(11): 997-1003, 2018 11.
Article in English | MEDLINE | ID: mdl-30336706

ABSTRACT

INTRODUCTION: Adenosine A2A Receptor (A2AR) antagonists are an emerging class of agents that treat cancers, both as a monotherapy and in combination with other therapeutic agents. Several studies support the accumulation of extracellular adenosine in the tumor microenvironment as a critical mechanism in immune evasion implicating A2AR antagonists for use in immuno-oncology. Areas covered: In this perspective article, the authors briefly outline the history of the A2AR antagonist field for central nervous system indications and give their perspective on the status of agents progressing today in oncology. A brief description of the biological rationale in oncology is given. A particular focus of this article is progress in A2AR structure determination and its impact on Structure-Based Drug Design. Expert opinion: Our understanding of the A2AR antagonist mechanism of action has changed and is now being clinically validated by several key companies in the oncology field. This area is likely to rapidly develop over the next 1-2 years.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Adenosine/metabolism , Adenosine A2 Receptor Antagonists/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Drug Design , Humans , Neoplasms/pathology , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A2A/drug effects , Receptor, Adenosine A2A/metabolism , Tumor Microenvironment
13.
Bioorg Med Chem Lett ; 28(8): 1336-1341, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29559278

ABSTRACT

The design and synthesis of a novel series of 2,6-disubstituted pyrazine derivatives as CK2 kinase inhibitors is described. Structure-guided optimization of a 5-substituted-3-thiophene carboxylic acid screening hit (3a) led to the development of a lead compound (12b), which shows inhibition in both enzymatic and cellular assays. Subsequent design and hybridization efforts also led to the unexpected identification of analogs with potent PIM kinase activity (14f).


Subject(s)
Casein Kinase II/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrazines/pharmacology , Cell Line, Tumor , Drug Design , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/pharmacokinetics , Structure-Activity Relationship
14.
ChemMedChem ; 13(3): 231-235, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29266803

ABSTRACT

Cyclin-dependent kinase (CDK) 12 knockdown via siRNA decreases the transcription of DNA-damage-response genes and sensitizes BRCA wild-type cells to poly(ADP-ribose) polymerase (PARP) inhibition. To recapitulate this effect with a small molecule, we sought a potent, selective CDK12 inhibitor. Crystal structures and modeling informed hybridization between dinaciclib and SR-3029, resulting in lead compound 5 [(S)-2-(1-(6-(((6,7-difluoro-1H-benzo[d]imidazol-2-yl)methyl)amino)-9-ethyl-9H-purin-2-yl)piperidin-2-yl)ethan-1-ol]. Further structure-guided optimization delivered a series of selective CDK12 inhibitors, including compound 7 [(S)-2-(1-(6-(((6,7-difluoro-1H-benzo[d]imidazol-2-yl)methyl)amino)-9-isopropyl-9H-purin-2-yl)piperidin-2-yl)ethan-1-ol]. Profiling of this compound across CDK9, 7, 2, and 1 at high ATP concentration, single-point kinase panel screening against 352 targets at 0.1 µm, and proteomics via kinase affinity matrix technology demonstrated the selectivity. This series of compounds inhibits phosphorylation of Ser2 on the C-terminal repeat domain of RNA polymerase II, consistent with CDK12 inhibition. These selective compounds were also acutely toxic to OV90 as well as THP1 cells.


Subject(s)
Benzimidazoles/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cyclin-Dependent Kinases/antagonists & inhibitors , Piperidines/chemical synthesis , Purines/chemistry , Pyridinium Compounds/chemistry , Benzimidazoles/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Cell Survival/drug effects , Crystallization , Cyclic N-Oxides , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Design , Humans , Indolizines , Kinetics , Phosphorylation , Piperidines/pharmacology , Protein Binding , Purines/pharmacology , Pyridinium Compounds/pharmacology , RNA Polymerase II/metabolism , Stereoisomerism , Structure-Activity Relationship
16.
Toxicol Sci ; 158(1): 213-226, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28453775

ABSTRACT

Many drugs designed to inhibit kinases have their clinical utility limited by cardiotoxicity-related label warnings or prescribing restrictions. While this liability is widely recognized, designing safer kinase inhibitors (KI) requires knowledge of the causative kinase(s). Efforts to unravel the kinases have encountered pharmacology with nearly prohibitive complexity. At therapeutically relevant concentrations, KIs show promiscuity distributed across the kinome. Here, to overcome this complexity, 65 KIs with known kinome-scale polypharmacology profiles were assessed for effects on cardiomyocyte (CM) beating. Changes in human iPSC-CM beat rate and amplitude were measured using label-free cellular impedance. Correlations between beat effects and kinase inhibition profiles were mined by computation analysis (Matthews Correlation Coefficient) to identify associated kinases. Thirty kinases met criteria of having (1) pharmacological inhibition correlated with CM beat changes, (2) expression in both human-induced pluripotent stem cell-derived cardiomyocytes and adult heart tissue, and (3) effects on CM beating following single gene knockdown. A subset of these 30 kinases were selected for mechanistic follow up. Examples of kinases regulating processes spanning the excitation-contraction cascade were identified, including calcium flux (RPS6KA3, IKBKE) and action potential duration (MAP4K2). Finally, a simple model was created to predict functional cardiotoxicity whereby inactivity at three sentinel kinases (RPS6KB1, FAK, STK35) showed exceptional accuracy in vitro and translated to clinical KI safety data. For drug discovery, identifying causative kinases and introducing a predictive model should transform the ability to design safer KI medicines. For cardiovascular biology, discovering kinases previously unrecognized as influencing cardiovascular biology should stimulate investigation of underappreciated signaling pathways.


Subject(s)
Heart/drug effects , Protein Kinase Inhibitors/toxicity , Calcium/metabolism , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/enzymology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , Protein Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction
17.
ACS Med Chem Lett ; 8(2): 239-244, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28197319

ABSTRACT

Mcl-1 is a pro-apoptotic BH3 protein family member similar to Bcl-2 and Bcl-xL. Overexpression of Mcl-1 is often seen in various tumors and allows cancer cells to evade apoptosis. Here we report the discovery and optimization of a series of non-natural peptide Mcl-1 inhibitors. Screening of DNA-encoded libraries resulted in hit compound 1, a 1.5 µM Mcl-1 inhibitor. A subsequent crystal structure demonstrated that compound 1 bound to Mcl-1 in a ß-turn conformation, such that the two ends of the peptide were close together. This proximity allowed for the linking of the two ends of the peptide to form a macrocycle. Macrocyclization resulted in an approximately 10-fold improvement in binding potency. Further exploration of a key hydrophobic interaction with Mcl-1 protein and also with the moiety that engages Arg256 led to additional potency improvements. The use of protein-ligand crystal structures and binding kinetics contributed to the design and understanding of the potency gains. Optimized compound 26 is a <3 nM Mcl-1 inhibitor, while inhibiting Bcl-2 at only 5 µM and Bcl-xL at >99 µM, and induces cleaved caspase-3 in MV4-11 cells with an IC50 of 3 µM after 6 h.

18.
Nat Chem Biol ; 12(11): 931-936, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27595327

ABSTRACT

Targeted covalent inhibition of disease-associated proteins has become a powerful methodology in the field of drug discovery, leading to the approval of new therapeutics. Nevertheless, current approaches are often limited owing to their reliance on a cysteine residue to generate the covalent linkage. Here we used aryl boronic acid carbonyl warheads to covalently target a noncatalytic lysine side chain, and generated to our knowledge the first reversible covalent inhibitors for Mcl-1, a protein-protein interaction (PPI) target that has proven difficult to inhibit via traditional medicinal chemistry strategies. These covalent binders exhibited improved potency in comparison to noncovalent congeners, as demonstrated in biochemical and cell-based assays. We identified Lys234 as the residue involved in covalent modification, via point mutation. The covalent binders discovered in this study will serve as useful starting points for the development of Mcl-1 therapeutics and probes to interrogate Mcl-1-dependent biological phenomena.


Subject(s)
Boronic Acids/chemistry , Boronic Acids/pharmacology , Lysine/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Boronic Acids/chemical synthesis , Dose-Response Relationship, Drug , Humans , Hydrogen-Ion Concentration , Lysine/metabolism , Molecular Structure , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 26(19): 4775-4780, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27578247

ABSTRACT

During the lead generation and optimization of PARP inhibitors blocking centrosome clustering, it was discovered that increasing hydrogen bond acceptor (HBA) strength improved cellular potency but led to elevated Caco2 and MDR1 efflux and thus poor oral bioavailability. Conversely, compounds with lower efflux had reduced potency. The project team was able to improve the bioavailability by reducing efflux through systematic modifications to the strength of the HBA by changing the electronic properties of neighboring groups, whilst maintaining sufficient acceptor strength for potency. Additionally, it was observed that enantiomers with different potency showed similar efflux, which is consistent with the promiscuity of efflux transporters. Eventually, a balance between potency and low efflux was achieved for a set of lead compounds with good bioavailability which allowed the project to progress towards establishing in vivo pharmacokinetic/pharmacodynamic relationships.


Subject(s)
Centrosome/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Caco-2 Cells , Dogs , Humans , Hydrogen Bonding , Madin Darby Canine Kidney Cells , Mice , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Rats
20.
Bioorg Med Chem Lett ; 25(24): 5743-7, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26546219

ABSTRACT

The propensity for cancer cells to accumulate additional centrosomes relative to normal cells could be exploited for therapeutic benefit in oncology. Following literature reports that suggested TNKS1 (tankyrase 1) and PARP16 may be involved with spindle structure and function and may play a role in suppressing multi-polar spindle formation in cells with supernumerary centrosomes, we initiated a phenotypic screen to look for small molecule poly (ADP-ribose) polymerase (PARP) enzyme family inhibitors that could produce a multi-polar spindle phenotype via declustering of centrosomes. Screening of AstraZeneca's collection of phthalazinone PARP inhibitors in HeLa cells using high-content screening techniques identified several compounds that produced a multi-polar spindle phenotype at low nanomolar concentrations. Characterization of these compounds across a broad panel of PARP family enzyme assays indicated that they had activity against several PARP family enzymes, including PARP1, 2, 3, 5a, 5b, and 6. Further optimization of these initial hits for improved declustering potency, solubility, permeability, and oral bioavailability resulted in AZ0108, a PARP1, 2, 6 inhibitor that potently inhibits centrosome clustering and is suitable for in vivo efficacy and tolerability studies.


Subject(s)
Centrosome/metabolism , Phthalazines/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Administration, Oral , Animals , Binding Sites , Caco-2 Cells , Centrosome/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , HeLa Cells , Humans , Microsomes/metabolism , Molecular Conformation , Molecular Dynamics Simulation , Phthalazines/administration & dosage , Phthalazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Structure, Tertiary , Rats , Tankyrases/antagonists & inhibitors , Tankyrases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...