Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Couns ; 29(5): 838-848, 2020 10.
Article in English | MEDLINE | ID: mdl-31916674

ABSTRACT

The last couple of decades have seen the rapid advancement of genomic technologies (GT) and their equally rapid adoption into clinical testing. Regardless of specialty, all genetic counselors are unified by the fundamental goal to aid in diagnosing patient's genetic disease underscoring the importance for genetic counselors to maintain an in-depth understanding of GT. The National Society of Genetic Counselors' (NSGC) GT Special Interest Group conducted an online survey of NSGC members to assess current genomic technologies knowledge gaps. A total of 171 individuals from a variety of primary work settings completed the survey sufficiently to be included in the analysis. The majority of respondents received their degree in genetic counseling in more recent years (2000-2015). On average across all technologies, >70% of respondents deemed knowledge of GTs as important for successful job performance, 55% responded that additional job training in GTs is needed to successfully perform job functions, and only 28% responded that graduate training in GTs was good. Overall, the data show that participating genetic counselors perceive that their knowledge of GTs is inadequate while it is a key component of their jobs. These results have implications both for training programs and for continuing education efforts. These data can be used as a starting point for additional research into GT educational needs of genetic counselors.


Subject(s)
Counselors/psychology , Education, Continuing/organization & administration , Genetic Counseling/psychology , Genomics/education , Female , Humans , Male , Surveys and Questionnaires
2.
Mol Genet Genomic Med ; 7(5): e630, 2019 05.
Article in English | MEDLINE | ID: mdl-30900393

ABSTRACT

BACKGROUND: Advances in sequencing technology have led to expanded use of multi-gene panel tests (MGPTs) for clinical diagnostics. Well-designed MGPTs must balance increased detection of clinically significant findings while mitigating the increase in variants of uncertain significance (VUS). To maximize clinical utililty, design of such panels should include comprehensive gene vetting using a standardized clinical validity (CV) scoring system. METHODS: To assess the impact of CV-based gene vetting on MGPT results, data from MGPTs for cardiovascular indications were retrospectively analyzed. Using our CV scoring system, genes were categorized as having definitive, strong, moderate, or limited evidence. The rates of reported pathogenic or likely pathogenic variants and VUS were then determined for each CV category. RESULTS: Of 106 total genes, 42% had definitive, 17% had strong, 29% had moderate, and 12% had limited CV. The detection rate of variants classified as pathogenic or likely pathogenic was higher for genes with greater CV, while the VUS rate showed an inverse relationship with CV score. No pathogenic or likely pathogenic findings were observed in genes with a limited CV. CONCLUSION: These results demonstrate the importance of a standardized, evidence-based vetting process to establish CV for genes on MGPTs. Using our proposed system may help to increase the detection rate while mitigating higher VUS rates.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing/methods , Genetic Testing/standards , Humans , Multifactorial Inheritance
3.
Eur J Med Genet ; 61(7): 416-420, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29572065

ABSTRACT

PURPOSE: While chromosomal regions of homozygosity (ROH) may implicate genes in known recessive disorders, their correlation to disease pathogenicity remains unclear. ROH around the centromere of the X chromosome (pericentromeric, pROH) is regarded as benign, although this has not been empirically demonstrated. METHODS: We examined microarray results from 122 female individuals harboring ROH bordering the X centromere. RESULTS: Consecutive ROH was most frequently observed for regions Xp11.23 to Xp11.21 and Xq11.1 to Xq12, with an average total size of 16.5 Mb. X chromosome pROH was unlikely related to phenotype in 41% (50/122) of cases due to other explanations: likely pathogenic deletion/duplication (17%, 21/122), apparently unaffected female (7%, 8/122), other clinical explanation (7%, 9/122), or consanguinity (10%, 12/122). Of the remaining cases with pROH as the only finding, four genes were associated with recessive disorders that overlapped one or more clinical features reported in our probands (KDM5C, FGD1, ZC4H2, and LAS1L). X chromosome pROH observed in our cohort overlapped with previously reported regions. CONCLUSIONS: pROH on the X chromosome are commonly observed in both affected individuals with alternate causes of disease as well as in unaffected individuals, suggesting that X chromosome pROH has no clinically significant effect on phenotype.


Subject(s)
Chromosomes, Human, X/genetics , Homozygote , Centromere , Female , Genetic Variation , Humans , Phenotype
4.
Forensic Sci Int Genet ; 7(5): 475-81, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23948316

ABSTRACT

Short tandem repeat (STR) loci are commonly used in forensic casework, familial analysis for human identification, and for monitoring hematopoietic cell engraftment after bone marrow transplant. Unexpected genetic variation leading to sequence and length differences in STR loci can complicate STR typing, and presents challenges in casework interpretation. Copy number variation (CNV) is a relatively recently identified form of genetic variation consisting of genomic regions present at variable copy numbers within an individual compared to a reference genome. Large scale population studies have demonstrated that likely all individuals carry multiple regions with CNV of 1kb in size or greater in their genome. To date, no study correlating genomic regions containing STR loci with CNV has been conducted. In this study, we analyzed results from 32,850 samples sent for clinical array comparative genomic hybridization (CGH) analysis for the presence of CNV at regions containing the 13 CODIS (Combined DNA Index System) STR, and the Amelogenin X (AMELX) and Amelogenin Y (AMELY) loci. Thirty-two individuals with CNV involving STR loci on chromosomes 2, 4, 7, 11, 12, 13, 16, and 21, and twelve with CNV involving the AMELX/AMELY loci were identified. These results were correlated with data from publicly available databases housing information on CNV identified in normal populations and additional clinical cases. These collective results demonstrate the presence of CNV in regions containing 9 of the 13 CODIS STR and AMELX/Y loci. Further characterization of STR profiles within regions of CNV, additional cataloging of these variants in multiple populations, and contributing such examples to the public domain will provide valuable information for reliable use of these loci.


Subject(s)
Amelogenin/genetics , DNA Copy Number Variations , Microsatellite Repeats , Bone Marrow Transplantation , Comparative Genomic Hybridization/methods , Female , Forensic Genetics , Genome, Human , Humans , In Situ Hybridization, Fluorescence , Male , Paternity
SELECTION OF CITATIONS
SEARCH DETAIL
...