Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3078, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594280

ABSTRACT

The bacterium Bdellovibrio bacteriovorus is a predator of other Gram-negative bacteria. The predator invades the prey's periplasm and modifies the prey's cell wall, forming a rounded killed prey, or bdelloplast, containing a live B. bacteriovorus. Redundancy in adhesive processes makes invasive mutants rare. Here, we identify a MIDAS adhesin family protein, Bd0875, that is expressed at the predator-prey invasive junction and is important for successful invasion of prey. A mutant strain lacking bd0875 is still able to form round, dead bdelloplasts; however, 10% of the bdelloplasts do not contain B. bacteriovorus, indicative of an invasion defect. Bd0875 activity requires the conserved MIDAS motif, which is linked to catch-and-release activity of MIDAS proteins in other organisms. A proteomic analysis shows that the uninvaded bdelloplasts contain B. bacteriovorus proteins, which are likely secreted into the prey by the Δbd0875 predator during an abortive invasion period. Thus, secretion of proteins into the prey seems to be sufficient for prey killing, even in the absence of a live predator inside the prey periplasm.


Subject(s)
Bdellovibrio bacteriovorus , Bdellovibrio , Bdellovibrio bacteriovorus/genetics , Bdellovibrio/genetics , Proteomics , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism
2.
Nat Microbiol ; 9(1): 214-227, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177296

ABSTRACT

Predatory bacteria, like the model endoperiplasmic bacterium Bdellovibrio bacteriovorus, show several adaptations relevant to their requirements for locating, entering and killing other bacteria. The mechanisms underlying prey recognition and handling remain obscure. Here we use complementary genetic, microscopic and structural methods to address this deficit. During invasion, the B. bacteriovorus protein CpoB concentrates into a vesicular compartment that is deposited into the prey periplasm. Proteomic and structural analyses of vesicle contents reveal several fibre-like proteins, which we name the mosaic adhesive trimer (MAT) superfamily, and show localization on the predator surface before prey encounter. These dynamic proteins indicate a variety of binding capabilities, and we confirm that one MAT member shows specificity for surface glycans from a particular prey. Our study shows that the B. bacteriovorus MAT protein repertoire enables a broad means for the recognition and handling of diverse prey epitopes encountered during bacterial predation and invasion.


Subject(s)
Bdellovibrio bacteriovorus , Bdellovibrio bacteriovorus/genetics , Bdellovibrio bacteriovorus/metabolism , Proteomics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Nat Microbiol ; 8(11): 2006-2019, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37814071

ABSTRACT

Histone proteins bind DNA and organize the genomes of eukaryotes and most archaea, whereas bacteria rely on different nucleoid-associated proteins. Homology searches have detected putative histone-fold domains in a few bacteria, but whether these function like archaeal/eukaryotic histones is unknown. Here we report that histones are major chromatin components in the bacteria Bdellovibrio bacteriovorus and Leptospira interrogans. Patterns of sequence evolution suggest important roles for histones in additional bacterial clades. Crystal structures (<2.0 Å) of the B. bacteriovorus histone (Bd0055) dimer and the histone-DNA complex confirm conserved histone-fold topology but indicate a distinct DNA-binding mode. Unlike known histones in eukaryotes, archaea and viruses, Bd0055 binds DNA end-on, forming a sheath of dimers encasing straight DNA rather than wrapping DNA around their outer surface. Our results demonstrate that histones are present across the tree of life and highlight potential evolutionary innovation in how they associate with DNA.


Subject(s)
Bdellovibrio bacteriovorus , Histones , Histones/genetics , Chromatin , Bdellovibrio bacteriovorus/genetics , Bacteria/genetics , DNA/chemistry , Archaea/genetics
4.
J Bacteriol ; 205(4): e0047522, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37010281

ABSTRACT

Lytic transglycosylases cut peptidoglycan backbones, facilitating a variety of functions within bacteria, including cell division, pathogenesis, and insertion of macromolecular machinery into the cell envelope. Here, we identify a novel role of a secreted lytic transglycosylase associated with the predatory lifestyle of Bdellovibrio bacteriovorus strain HD100. During wild-type B. bacteriovorus prey invasion, the predator rounds up rod-shaped prey into spherical prey bdelloplasts, forming a spacious niche within which the predator grows. Deleting the MltA-like lytic transglycosylase Bd3285 still permitted predation but resulted in three different, invaded prey cell shapes: spheres, rods, and "dumbbells." Amino acid D321 within the catalytic C-terminal 3D domain of Bd3285 was essential for wild-type complementation. Microscopic analyses revealed that dumbbell-shaped bdelloplasts are derived from Escherichia coli prey undergoing cell division at the moment of Δbd3285 predator invasion. Prelabeling of E. coli prey peptidoglycan prior to predation with the fluorescent D-amino acid HADA showed that the dumbbell bdelloplasts invaded by B. bacteriovorus Δbd3285 contained a septum. Fluorescently tagged Bd3285, expressed in E. coli, localized to the septum of dividing cells. Our data indicate that B. bacteriovorus secretes the lytic transglycosylase Bd3285 into the E. coli periplasm during prey invasion to cleave the septum of dividing prey, facilitating prey cell occupation. IMPORTANCE Antimicrobial resistance is a serious and rapidly growing threat to global health. Bdellovibrio bacteriovorus can prey upon an extensive range of Gram-negative bacterial pathogens and thus has promising potential as a novel antibacterial therapeutic and is a source of antibacterial enzymes. Here, we elucidate the role of a unique secreted lytic transglycosylase from B. bacteriovorus which acts on the septal peptidoglycan of its prey. This improves our understanding of mechanisms that underpin bacterial predation.


Subject(s)
Bdellovibrio bacteriovorus , Bdellovibrio , Animals , Bdellovibrio bacteriovorus/genetics , Bdellovibrio/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Peptidoglycan/metabolism , Predatory Behavior , Amino Acids/metabolism
5.
PLoS Genet ; 18(5): e1010164, 2022 05.
Article in English | MEDLINE | ID: mdl-35622882

ABSTRACT

Bacterial second messengers are important for regulating diverse bacterial lifestyles. Cyclic di-GMP (c-di-GMP) is produced by diguanylate cyclase enzymes, named GGDEF proteins, which are widespread across bacteria. Recently, hybrid promiscuous (Hypr) GGDEF proteins have been described in some bacteria, which produce both c-di-GMP and a more recently identified bacterial second messenger, 3',3'-cyclic-GMP-AMP (cGAMP). One of these proteins was found in the predatory Bdellovibrio bacteriovorus, Bd0367. The bd0367 GGDEF gene deletion strain was found to enter prey cells, but was incapable of leaving exhausted prey remnants via gliding motility on a solid surface once predator cell division was complete. However, it was unclear which signal regulated this process. We show that cGAMP signalling is active within B. bacteriovorus and that, in addition to producing c-di-GMP and some c-di-AMP, Bd0367 is a primary producer of cGAMP in vivo. Site-directed mutagenesis of serine 214 to an aspartate rendered Bd0367 into primarily a c-di-GMP synthase. B. bacteriovorus strain bd0367S214D phenocopies the bd0367 deletion strain by being unable to glide on a solid surface, leading to an inability of new progeny to exit from prey cells post-replication. Thus, this process is regulated by cGAMP. Deletion of bd0367 was also found to be incompatible with wild-type flagellar biogenesis, as a result of an acquired mutation in flagellin chaperone gene homologue fliS, implicating c-di-GMP in regulation of swimming motility. Thus the single Bd0367 enzyme produces two secondary messengers by action of the same GGDEF domain, the first reported example of a synthase that regulates multiple second messengers in vivo. Unlike roles of these signalling molecules in other bacteria, these signal to two separate motility systems, gliding and flagellar, which are essential for completion of the bacterial predation cycle and prey exit by B. bacteriovorus.


Subject(s)
Bdellovibrio bacteriovorus , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bdellovibrio bacteriovorus/genetics , Bdellovibrio bacteriovorus/metabolism , Nucleotides, Cyclic/metabolism
6.
Nat Commun ; 13(1): 1509, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35314810

ABSTRACT

Peptidoglycan hydrolases contribute to the generation of helical cell shape in Campylobacter and Helicobacter bacteria, while cytoskeletal or periskeletal proteins determine the curved, vibrioid cell shape of Caulobacter and Vibrio. Here, we identify a peptidoglycan hydrolase in the vibrioid-shaped predatory bacterium Bdellovibrio bacteriovorus which invades and replicates within the periplasm of Gram-negative prey bacteria. The protein, Bd1075, generates cell curvature in B. bacteriovorus by exerting LD-carboxypeptidase activity upon the predator cell wall as it grows inside spherical prey. Bd1075 localizes to the outer convex face of B. bacteriovorus; this asymmetric localization requires a nuclear transport factor 2-like (NTF2) domain at the protein C-terminus. We solve the crystal structure of Bd1075, which is monomeric with key differences to other LD-carboxypeptidases. Rod-shaped Δbd1075 mutants invade prey more slowly than curved wild-type predators and stretch invaded prey from within. We therefore propose that the vibrioid shape of B. bacteriovorus contributes to predatory fitness.


Subject(s)
Bdellovibrio bacteriovorus , Bdellovibrio , Bdellovibrio/genetics , Bdellovibrio bacteriovorus/genetics , Bdellovibrio bacteriovorus/metabolism , Cell Wall/metabolism , Peptidoglycan/metabolism , Periplasm/metabolism
7.
Nat Commun ; 11(1): 4817, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968056

ABSTRACT

Lysozymes are among the best-characterized enzymes, acting upon the cell wall substrate peptidoglycan. Here, examining the invasive bacterial periplasmic predator Bdellovibrio bacteriovorus, we report a diversified lysozyme, DslA, which acts, unusually, upon (GlcNAc-) deacetylated peptidoglycan. B. bacteriovorus are known to deacetylate the peptidoglycan of the prey bacterium, generating an important chemical difference between prey and self walls and implying usage of a putative deacetyl-specific "exit enzyme". DslA performs this role, and ΔDslA strains exhibit a delay in leaving from prey. The structure of DslA reveals a modified lysozyme superfamily fold, with several adaptations. Biochemical assays confirm DslA specificity for deacetylated cell wall, and usage of two glutamate residues for catalysis. Exogenous DslA, added ex vivo, is able to prematurely liberate B. bacteriovorus from prey, part-way through the predatory lifecycle. We define a mechanism for specificity that invokes steric selection, and use the resultant motif to identify wider DslA homologues.


Subject(s)
Bdellovibrio bacteriovorus/enzymology , Bdellovibrio bacteriovorus/metabolism , Muramidase/chemistry , Muramidase/metabolism , Periplasm/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bdellovibrio bacteriovorus/genetics , Cell Wall , Escherichia coli , Gene Expression Regulation, Bacterial , Models, Molecular , Muramidase/genetics , Mutation , Peptidoglycan/metabolism , Phenotype , Protein Conformation , Substrate Specificity
8.
Front Microbiol ; 11: 542, 2020.
Article in English | MEDLINE | ID: mdl-32373080

ABSTRACT

The predatory bacterium B. bacteriovorus grows and divides inside the periplasm of Gram-negative bacteria, forming a structure known as a bdelloplast. Cell division of predators inside the dead prey cell is not by binary fission but instead by synchronous division of a single elongated filamentous cell into odd or even numbers of progeny cells. Bdellovibrio replication and cell division processes are dependent on the finite level of nutrients available from inside the prey bacterium. The filamentous growth and division process of the predator maximizes the number of progeny produced by the finite nutrients in a way that binary fission could not. To learn more about such an unusual growth profile, we studied the role of DivIVA in the growing Bdellovibrio cell. This protein is well known for its link to polar cell growth and spore formation in Gram-positive bacteria, but little is known about its function in a predatory growth context. We show that DivIVA is expressed in the growing B. bacteriovorus cell and controls cell morphology during filamentous cell division, but not the number of progeny produced. Bacterial Two Hybrid (BTH) analysis shows DivIVA may interact with proteins that respond to metabolic indicators of amino-acid biosynthesis or changes in redox state. Such changes may be relevant signals to the predator, indicating the consumption of prey nutrients within the sealed bdelloplast environment. ParA, a chromosome segregation protein, also contributes to bacterial septation in many species. The B. bacteriovorus genome contains three ParA homologs; we identify a canonical ParAB pair required for predatory cell division and show a BTH interaction between a gene product encoded from the same operon as DivIVA with the canonical ParA. The remaining ParA proteins are both expressed in Bdellovibrio but are not required for predator cell division. Instead, one of these ParA proteins coordinates gliding motility, changing the frequency at which the cells reverse direction. Our work will prime further studies into how one bacterium can co-ordinate its cell division with the destruction of another bacterium that it dwells within.

9.
Sci Rep ; 10(1): 5315, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210253

ABSTRACT

Bdellovibrio bacteriovorus is a small Gram-negative bacterium and an obligate predator of other Gram-negative bacteria. Prey resistance to B. bacteriovorus attack is rare and transient. This consideration together with its safety and low immunogenicity makes B. bacteriovorus a valid alternative to antibiotics, especially in the treatment of multidrug resistant pathogens. In this study we developed a novel technique to estimate B. bacteriovorus sensitivity against antibiotics in order to make feasible the development and testing of co-therapies with antibiotics that would increase its antimicrobial efficacy and at the same time reduce the development of drug resistance. Results from tests performed with this technique show that among all tested antibiotics, trimethoprim has the lowest antimicrobial effect on B. bacteriovorus. Additional experiments revealed that the mechanism of trimethoprim resistance in B. bacteriovorus depends on the low affinity of this compound for the B. bacteriovorus dihydrofolate reductase (Bd DHFR).


Subject(s)
Anti-Bacterial Agents/metabolism , Bdellovibrio bacteriovorus/growth & development , Bdellovibrio bacteriovorus/metabolism , Antibiosis/genetics , Bdellovibrio/genetics , Bdellovibrio/growth & development , Bdellovibrio bacteriovorus/genetics , Drug Resistance, Bacterial/genetics , Gram-Negative Bacteria/drug effects , Microbial Sensitivity Tests/methods , Trimethoprim/pharmacology , Trimethoprim Resistance/genetics
10.
J Bacteriol ; 202(6)2020 02 25.
Article in English | MEDLINE | ID: mdl-31907203

ABSTRACT

Bacteria are preyed upon by diverse microbial predators, including bacteriophage and predatory bacteria, such as Bdellovibrio bacteriovorus While bacteriophage are used as antimicrobial therapies in Eastern Europe and are being applied for compassionate use in the United States, predatory bacteria are only just beginning to reveal their potential therapeutic uses. However, predation by either predator type can falter due to different adaptations arising in the prey bacteria. When testing poultry farm wastewater for novel Bdellovibrio isolates on Escherichia coli prey lawns, individual composite plaques were isolated containing both an RTP (rosette-tailed-phage)-like-phage and a B. bacteriovorus strain and showing central prey lysis and halos of extra lysis. Combining the purified phage with a lab strain of B. bacteriovorus HD100 recapitulated haloed plaques and increased killing of the E. coli prey in liquid culture, showing an effective side-by-side action of these predators compared to their actions alone. Using approximate Bayesian computation to select the best fitting from a variety of different mathematical models demonstrated that the experimental data could be explained only by assuming the existence of three prey phenotypes: (i) sensitive to both predators, (ii) genetically resistant to phage only, and (iii) plastic resistant to B. bacteriovorus only. Although each predator reduces prey availability for the other, high phage numbers did not abolish B. bacteriovorus predation, so both predators are competent to coexist and are causing different selective pressures on the bacterial surface while, in tandem, controlling prey bacterial numbers efficiently. This suggests that combinatorial predator therapy could overcome problems of phage resistance.IMPORTANCE With increasing levels of antibiotic resistance, the development of alternative antibacterial therapies is urgently needed. Two potential alternatives are bacteriophage and predatory bacteria. Bacteriophage therapy has been used, but prey/host specificity and the rapid acquisition of bacterial resistance to bacteriophage are practical considerations. Predatory bacteria are of interest due to their broad Gram-negative bacterial prey range and the lack of simple resistance mechanisms. Here, a bacteriophage and a strain of Bdellovibrio bacteriovorus, preyed side by side on a population of E. coli, causing a significantly greater decrease in prey numbers than either alone. Such combinatorial predator therapy may have greater potential than individual predators since prey surface changes selected for by each predator do not protect prey against the other predator.


Subject(s)
Bacteriophages/physiology , Bdellovibrio bacteriovorus/virology , Escherichia coli/physiology , Host-Pathogen Interactions , Models, Biological , Algorithms , Environment , Genome, Bacterial , Genomics/methods
11.
EMBO J ; 38(17): e100772, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31355487

ABSTRACT

Bacterial usage of the cyclic dinucleotide c-di-GMP is widespread, governing the transition between motile/sessile and unicellular/multicellular behaviors. There is limited information on c-di-GMP metabolism, particularly on regulatory mechanisms governing control of EAL c-di-GMP phosphodiesterases. Herein, we provide high-resolution structures for an EAL enzyme Bd1971, from the predatory bacterium Bdellovibrio bacteriovorus, which is controlled by a second signaling nucleotide, cAMP. The full-length cAMP-bound form reveals the sensory N-terminus to be a domain-swapped variant of the cNMP/CRP family, which in the cAMP-activated state holds the C-terminal EAL enzyme in a phosphodiesterase-active conformation. Using a truncation mutant, we trap both a half-occupied and inactive apo-form of the protein, demonstrating a series of conformational changes that alter juxtaposition of the sensory domains. We show that Bd1971 interacts with several GGDEF proteins (c-di-GMP producers), but mutants of Bd1971 do not share the discrete phenotypes of GGDEF mutants, instead having an elevated level of c-di-GMP, suggesting that the role of Bd1971 is to moderate these levels, allowing "action potentials" to be generated by each GGDEF protein to effect their specific functions.


Subject(s)
Bdellovibrio bacteriovorus/metabolism , Cyclic AMP/metabolism , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bdellovibrio bacteriovorus/chemistry , Bdellovibrio bacteriovorus/genetics , Binding Sites , Crystallography, X-Ray , Gene Expression Regulation, Bacterial , Models, Molecular , Nucleotides/metabolism , Phosphoric Diester Hydrolases/genetics , Protein Binding , Protein Conformation , Signal Transduction
12.
Appl Environ Microbiol ; 85(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31076424

ABSTRACT

Bdellovibrio bacteriovorus is a small Gram-negative, obligate predatory bacterium that is largely found in wet, aerobic environments (e.g., soil). This bacterium attacks and invades other Gram-negative bacteria, including animal and plant pathogens. The intriguing life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase, in which the predatory bacterium searches for its prey, and a reproductive phase, in which B. bacteriovorus degrades a host's macromolecules and reuses them for its own growth and chromosome replication. Although the cell biology of this predatory bacterium has gained considerable interest in recent years, we know almost nothing about the dynamics of its chromosome replication. Here, we performed a real-time investigation into the subcellular localization of the replisome(s) in single cells of B. bacteriovorus Our results show that in B. bacteriovorus, chromosome replication takes place only during the reproductive phase and exhibits a novel spatiotemporal arrangement of replisomes. The replication process starts at the invasive pole of the predatory bacterium inside the prey cell and proceeds until several copies of the chromosome have been completely synthesized. Chromosome replication is not coincident with the predator cell division, and it terminates shortly before synchronous predator filament septation occurs. In addition, we demonstrate that if this B. bacteriovorus life cycle fails in some cells of Escherichia coli, they can instead use second prey cells to complete their life cycle.IMPORTANCE New strategies are needed to combat multidrug-resistant bacterial infections. Application of the predatory bacterium Bdellovibrio bacteriovorus, which kills other bacteria, including pathogens, is considered promising for combating bacterial infections. The B. bacteriovorus life cycle consists of two phases, a free-living, invasive attack phase and an intracellular reproductive phase, in which this predatory bacterium degrades the host's macromolecules and reuses them for its own growth. To understand the use of B. bacteriovorus as a "living antibiotic," it is first necessary to dissect its life cycle, including chromosome replication. Here, we present a real-time investigation into subcellular localization of chromosome replication in a single cell of B. bacteriovorus This process initiates at the invasion pole of B. bacteriovorus and proceeds until several copies of the chromosome have been completely synthesized. Interestingly, we demonstrate that some cells of B. bacteriovorus require two prey cells sequentially to complete their life cycle.


Subject(s)
Bdellovibrio bacteriovorus/physiology , DNA Replication Timing , Life History Traits , Bdellovibrio bacteriovorus/genetics , Diet
13.
Sci Rep ; 9(1): 5007, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30899045

ABSTRACT

Bdellovibrio bacteriovorus is a predatory deltaproteobacterium that encounters individual Gram-negative prey bacteria with gliding or swimming motility, and then is able to invade such prey cells via type IVa pilus-dependent mechanisms. Movement control (pili or gliding) in other deltaproteobacteria, such as the pack hunting Myxococcus xanthus, uses a response regulator protein, RomRMx (which dynamically relocalises between the cell poles) and a GTPase, MglAMx, previously postulated as an interface between the FrzMx chemosensory system and gliding or pilus-motility apparatus, to produce regulated bidirectional motility. In contrast, B. bacteriovorus predation is a more singular encounter between a lone predator and prey; contact is always via the piliated, non-flagellar pole of the predator, involving MglABd, but no Frz system. In this new study, tracking fluorescent RomRBd microscopically during predatory growth shows that it does not dynamically relocalise, in contrast to the M. xanthus protein; instead having possible roles in growth events. Furthermore, transcriptional start analysis, site-directed mutagenesis and bacterial two-hybrid interaction studies, indicate an evolutionary loss of RomRBd activation (via receiver domain phosphorylation) in this lone hunting bacterium, demonstrating divergence from its bipolar role in motility in pack-hunting M. xanthus and further evolution that may differentiate lone from pack predators.


Subject(s)
Bacterial Proteins/genetics , Bdellovibrio bacteriovorus/genetics , Fimbriae, Bacterial/genetics , GTP Phosphohydrolases/genetics , Cell Movement/genetics , Gene Expression Regulation, Bacterial/genetics
14.
Nat Microbiol ; 3(2): 254, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29311645

ABSTRACT

In the original version of this Article, a grant number and acknowledgement were omitted. The Acknowledgements section should have stated that one of the 3D SIM microscopes used for this research was supported by Medical Research Council UK grant (MR/K015753/1) to S. Foster, University of Sheffield, UK, and that the authors thank C. Walther and S. Foster for the access and their kind help with this. This has now been corrected in all versions of the Article.

15.
Nat Microbiol ; 2(12): 1648-1657, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28974693

ABSTRACT

Modification of essential bacterial peptidoglycan (PG)-containing cell walls can lead to antibiotic resistance; for example, ß-lactam resistance by L,D-transpeptidase activities. Predatory Bdellovibrio bacteriovorus are naturally antibacterial and combat infections by traversing, modifying and finally destroying walls of Gram-negative prey bacteria, modifying their own PG as they grow inside prey. Historically, these multi-enzymatic processes on two similar PG walls have proved challenging to elucidate. Here, with a PG-labelling approach utilizing timed pulses of multiple fluorescent D-amino acids, we illuminate dynamic changes that predator and prey walls go through during the different phases of bacteria:bacteria invasion. We show formation of a reinforced circular port-hole in the prey wall, L,D-transpeptidaseBd-mediated D-amino acid modifications strengthening prey PG during Bdellovibrio invasion, and a zonal mode of predator elongation. This process is followed by unconventional, multi-point and synchronous septation of the intracellular Bdellovibrio, accommodating odd- and even-numbered progeny formation by non-binary division.


Subject(s)
Amino Acids, Diamino/metabolism , Amino Acids/metabolism , Bdellovibrio bacteriovorus/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bdellovibrio/metabolism , Bdellovibrio bacteriovorus/cytology , Bdellovibrio bacteriovorus/enzymology , Bdellovibrio bacteriovorus/genetics , Escherichia coli/metabolism , Genes, Bacterial/genetics , Gram-Negative Bacteria/metabolism , Peptidyl Transferases/genetics , Peptidyl Transferases/metabolism , Sequence Deletion , Time Factors
16.
Curr Biol ; 26(24): 3343-3351, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27889262

ABSTRACT

Bdellovibrio bacteriovorus are predatory bacteria that invade and kill a range of Gram-negative bacterial pathogens in natural environments and in vitro [1, 2]. In this study, we investigated Bdellovibrio as an injected, antibacterial treatment in vivo, using zebrafish (Danio rerio) larvae infected with an antibiotic-resistant strain of the human pathogen Shigella flexneri. When injected alone, Bdellovibrio can persist for more than 24 hr in vivo yet exert no pathogenic effects on zebrafish larvae. Bdellovibrio injection of zebrafish containing a lethal dose of Shigella promotes pathogen killing, leading to increased zebrafish survival. Live-cell imaging of infected zebrafish reveals that Shigella undergo rounding induced by the invasive predation from Bdellovibrio in vivo. Furthermore, Shigella-dependent replication of Bdellovibrio was captured inside the zebrafish larvae, indicating active predation in vivo. Bdellovibrio can be engulfed and ultimately eliminated by host neutrophils and macrophages, yet have a sufficient dwell time to prey on pathogens. Experiments in immune-compromised zebrafish reveal that maximal therapeutic benefits of Bdellovibrio result from the synergy of both bacterial predation and host immunity, but that in vivo predation contributes significantly to the survival outcome. Our results demonstrate that successful antibacterial therapy can be achieved via the host immune system working together with bacterial predation by Bdellovibrio. Such cooperation may be important to consider in the fight against antibiotic-resistant infections in vivo.


Subject(s)
Antibiosis , Bdellovibrio/physiology , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Shigella flexneri/physiology , Animals , Immunity, Cellular , Immunity, Innate , Larva/immunology , Larva/microbiology , Zebrafish
17.
Sci Rep ; 6: 26010, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27211869

ABSTRACT

The peptidoglycan wall, located in the periplasm between the inner and outer membranes of the cell envelope in Gram-negative bacteria, maintains cell shape and endows osmotic robustness. Predatory Bdellovibrio bacteria invade the periplasm of other bacterial prey cells, usually crossing the peptidoglycan layer, forming transient structures called bdelloplasts within which the predators replicate. Prey peptidoglycan remains intact for several hours, but is modified and then degraded by escaping predators. Here we show predation is altered by deleting two Bdellovibrio N-acetylglucosamine (GlcNAc) deacetylases, one of which we show to have a unique two domain structure with a novel regulatory"plug". Deleting the deacetylases limits peptidoglycan degradation and rounded prey cell "ghosts" persist after mutant-predator exit. Mutant predators can replicate unusually in the periplasmic region between the peptidoglycan wall and the outer membrane rather than between wall and inner-membrane, yet still obtain nutrients from the prey cytoplasm. Deleting two further genes encoding DacB/PBP4 family proteins, known to decrosslink and round prey peptidoglycan, results in a quadruple mutant Bdellovibrio which leaves prey-shaped ghosts upon predation. The resultant bacterial ghosts contain cytoplasmic membrane within bacteria-shaped peptidoglycan surrounded by outer membrane material which could have promise as "bacterial skeletons" for housing artificial chromosomes.


Subject(s)
Bacterial Proteins/metabolism , Bdellovibrio/physiology , Cell Wall/metabolism , DNA, Bacterial/genetics , N-Acetylglucosaminyltransferases/metabolism , Bacterial Proteins/genetics , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/metabolism , DNA Replication/genetics , DNA, Bacterial/metabolism , Microorganisms, Genetically-Modified , N-Acetylglucosaminyltransferases/genetics , Peptidoglycan/metabolism , Periplasm/metabolism , Proteolysis , Serine-Type D-Ala-D-Ala Carboxypeptidase/genetics , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism
19.
Nat Commun ; 6: 8884, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26626559

ABSTRACT

Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator's peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital - ΔBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morphology, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle.


Subject(s)
Ankyrins/metabolism , Bacterial Proteins/metabolism , Bdellovibrio/physiology , Escherichia coli , Gene Expression Regulation, Bacterial/physiology , Bacterial Proteins/genetics , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Models, Molecular , Protein Conformation
20.
Environ Microbiol Rep ; 7(6): 812-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25953741

ABSTRACT

Bdellovibrio bacteriovorus are small Deltaproteobacteria that invade, kill and assimilate their prey. Metagenomic assembly analysis of the microbial mats of an arsenic rich, hot spring was performed to describe the genotypes of the predator Bdellovibrio and the ecogenetically adapted taxa Enterobacter. The microbial mats were enriched with Bdellovibrio (1.3%) and several Gram-negative bacteria including Bordetella (16%), Enterobacter (6.8%), Burkholderia (4.8%), Acinetobacter (2.3%) and Yersinia (1%). A high-quality (47 contigs, 25X coverage; 3.5 Mbp) draft genome of Bdellovibrio (strain ArHS; Arsenic Hot Spring) was reassembled, which lacked the marker gene Bd0108 associated with the usual method of prey interaction and invasion for this genus, while maintaining genes coding for the hydrolytic enzymes necessary for prey assimilation. By filtering microbial mat samples (< 0.45 µm) to enrich for small predatory cell sizes, we observed Bdellovibrio-like cells attached side-on to E. coli through electron microscopy. Furthermore, a draft pan-genome of the dominant potential host taxon, Enterobacter cloacae ArHS (4.8 Mb), along with three of its viral genotypes (n = 3; 42 kb, 49 kb and 50 kb), was assembled. These data were further used to analyse the population level evolutionary dynamics (taxonomical and functional) of reconstructed genotypes.


Subject(s)
Arsenic/analysis , Genotype , Hot Springs/chemistry , Hot Springs/microbiology , Metagenome , Metagenomics , Microbiota , Water Microbiology , Adaptation, Biological/genetics , Arsenic/toxicity , Phylogeny , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...