Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
DNA Repair (Amst) ; 129: 103548, 2023 09.
Article in English | MEDLINE | ID: mdl-37541027

ABSTRACT

The perturbation of DNA replication, a phenomena termed "replication stress", is a driving force of genome instability and a hallmark of cancer cells. Among the DNA repair mechanisms that contribute to tolerating replication stress, the homologous recombination pathway is central to the alteration of replication fork progression. In many organisms, defects in the homologous recombination machinery result in increased cell sensitivity to replication-blocking agents and a higher risk of cancer in humans. Moreover, the status of homologous recombination in cancer cells often correlates with the efficacy of anti-cancer treatment. In this review, we discuss our current understanding of the different functions of homologous recombination in fixing replication-associated DNA damage and contributing to complete genome duplication. We also examine which functions are pivotal in preventing cancer and genome instability.


Subject(s)
DNA Damage , DNA Replication , Humans , Homologous Recombination , DNA Repair , Genomic Instability
2.
Microb Cell ; 6(1): 1-64, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30652105

ABSTRACT

Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...