Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8(1): 263, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811582

ABSTRACT

Gram-negative bacteria possess specialised biogenesis machineries that facilitate the export of amyloid subunits for construction of a biofilm matrix. The secretion of bacterial functional amyloid requires a bespoke outer-membrane protein channel through which unfolded amyloid substrates are translocated. Here, we combine X-ray crystallography, native mass spectrometry, single-channel electrical recording, molecular simulations and circular dichroism measurements to provide high-resolution structural insight into the functional amyloid transporter from Pseudomonas, FapF. FapF forms a trimer of gated ß-barrel channels in which opening is regulated by a helical plug connected to an extended coil-coiled platform spanning the bacterial periplasm. Although FapF represents a unique type of secretion system, it shares mechanistic features with a diverse range of peptide translocation systems. Our findings highlight alternative strategies for handling and export of amyloid protein sequences.Gram-negative bacteria assemble biofilms from amyloid fibres, which translocate across the outer membrane as unfolded amyloid precursors through a secretion system. Here, the authors characterise the structural details of the amyloid transporter FapF in Pseudomonas.


Subject(s)
Amyloid/metabolism , Bacterial Proteins/metabolism , Bacterial Secretion Systems/metabolism , Pseudomonas/metabolism , Amyloid/chemistry , Amyloid/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Secretion Systems/chemistry , Bacterial Secretion Systems/genetics , Biofilms , Crystallography, X-Ray , Protein Conformation , Protein Transport , Pseudomonas/chemistry , Pseudomonas/genetics
2.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 12): 892-896, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27917837

ABSTRACT

Bacteria often produce extracellular amyloid fibres via a multi-component secretion system. Aggregation-prone, unstructured subunits cross the periplasm and are secreted through the outer membrane, after which they self-assemble. Here, significant progress is presented towards solving the high-resolution crystal structure of the novel amyloid transporter FapF from Pseudomonas, which facilitates the secretion of the amyloid-forming polypeptide FapC across the bacterial outer membrane. This represents the first step towards obtaining structural insight into the products of the Pseudomonas fap operon. Initial attempts at crystallizing full-length and N-terminally truncated constructs by refolding techniques were not successful; however, after preparing FapF106-430 from the membrane fraction, reproducible crystals were obtained using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.5 Šresolution. These crystals belonged to the monoclinic space group C121, with unit-cell parameters a = 143.4, b = 124.6, c = 80.4 Å, α = γ = 90, ß = 96.32° and three monomers in the asymmetric unit. It was found that the switch to complete detergent exchange into C8E4 was crucial for forming well diffracting crystals, and it is suggested that this combined with limited proteolysis is a potentially useful protocol for membrane ß-barrel protein crystallography. The three-dimensional structure of FapF will provide invaluable information on the mechanistic differences of biogenesis between the curli and Fap functional amyloid systems.


Subject(s)
Amyloid/chemistry , Bacterial Outer Membrane Proteins/chemistry , Membrane Transport Proteins/chemistry , Pseudomonas/chemistry , Amino Acid Sequence , Amyloid/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Cloning, Molecular , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Periplasm/chemistry , Periplasm/metabolism , Plasmids/chemistry , Plasmids/metabolism , Pseudomonas/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , X-Ray Diffraction
3.
Nat Commun ; 7: 13679, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27882950

ABSTRACT

The rapid spread of Zika virus (ZIKV), which causes microcephaly and Guillain-Barré syndrome, signals an urgency to identify therapeutics. Recent efforts to rescreen dengue virus human antibodies for ZIKV cross-neutralization activity showed antibody C10 as one of the most potent. To investigate the ability of the antibody to block fusion, we determined the cryoEM structures of the C10-ZIKV complex at pH levels mimicking the extracellular (pH8.0), early (pH6.5) and late endosomal (pH5.0) environments. The 4.0 Å resolution pH8.0 complex structure shows that the antibody binds to E proteins residues at the intra-dimer interface, and the virus quaternary structure-dependent inter-dimer and inter-raft interfaces. At pH6.5, antibody C10 locks all virus surface E proteins, and at pH5.0, it locks the E protein raft structure, suggesting that it prevents the structural rearrangement of the E proteins during the fusion event-a vital step for infection. This suggests antibody C10 could be a good therapeutic candidate.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Viral Envelope Proteins/immunology , Zika Virus/immunology , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/ultrastructure , Cross Reactions/immunology , Cryoelectron Microscopy , Dengue Virus/immunology , Hydrogen-Ion Concentration , Zika Virus/ultrastructure
4.
Sci Rep ; 6: 24656, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27098162

ABSTRACT

Polypeptide aggregation into amyloid is linked with several debilitating human diseases. Despite the inherent risk of aggregation-induced cytotoxicity, bacteria control the export of amyloid-prone subunits and assemble adhesive amyloid fibres during biofilm formation. An Escherichia protein, CsgC potently inhibits amyloid formation of curli amyloid proteins. Here we unlock its mechanism of action, and show that CsgC strongly inhibits primary nucleation via electrostatically-guided molecular encounters, which expands the conformational distribution of disordered curli subunits. This delays the formation of higher order intermediates and maintains amyloidogenic subunits in a secretion-competent form. New structural insight also reveal that CsgC is part of diverse family of bacterial amyloid inhibitors. Curli assembly is therefore not only arrested in the periplasm, but the preservation of conformational flexibility also enables efficient secretion to the cell surface. Understanding how bacteria safely handle amyloidogenic polypeptides contribute towards efforts to control aggregation in disease-causing amyloids and amyloid-based biotechnological applications.


Subject(s)
Amyloid/chemistry , Escherichia coli Proteins/chemistry , Molecular Chaperones/chemistry , Static Electricity , Active Transport, Cell Nucleus , Amyloid/classification , Amyloid/genetics , Amyloid/metabolism , Escherichia coli Proteins/metabolism , Kinetics , Molecular Chaperones/metabolism , Osmolar Concentration , Protein Binding , Protein Conformation , Protein Folding
5.
Protein Sci ; 23(6): 723-34, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24639329

ABSTRACT

New direct acting antivirals (DAAs) such as daclatasvir (DCV; BMS-790052), which target NS5A function with picomolar potency, are showing promise in clinical trials. The exact nature of how these compounds have an inhibitory effect on HCV is unknown; however, major resistance mutations appear in the N-terminal region of NS5A that include the amphipathic helix and domain 1. The dimeric symmetry of these compounds suggests that they act on a dimer of NS5A, which is also consistent with the presence of dimers in crystals of NS5A domain 1 from genotype 1b. Genotype 1a HCV is less potently affected by these compounds and resistance mutations have a greater effect than in the 1b genotypes. We have obtained crystals of domain 1 of the important 1a NS5A homologue and intriguingly, our X-ray crystal structure reveals two new dimeric forms of this domain. Furthermore, the high solvent content (75%) makes it ideal for ligand-soaking. Daclatasvir (DCV) shows twofold symmetry suggesting NS5A dimers may be of physiological importance and serve as potential binding sites for DCV. These dimers also allow for new conformations of a NS5A expansive network which could explain its operation on the membranous web. Additionally, sulfates bound in the crystal structure may provide evidence for the previously proposed RNA binding groove, or explain regulation of NS5A domain 2 and 3 function and phosphorylation, by domain 1.


Subject(s)
Hepacivirus/drug effects , Hepacivirus/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology , Carbamates , Crystallography, X-Ray , Drug Resistance, Viral , Genotype , Imidazoles/pharmacology , Pyrrolidines , Valine/analogs & derivatives
6.
Biochem Biophys Res Commun ; 421(2): 208-13, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22497887

ABSTRACT

The use of heavy water (D(2)O) as a solvent is commonplace in many spectroscopic techniques for the study of biological macromolecules. A significant deuterium isotope effect exists where hydrogen-bonding is important, such as in protein stability, dynamics and assembly. Here we illustrate the use of D(2)O in additive screening for the production of reproducible diffraction-quality crystals for the Salmonella enteritidis fimbriae 14 (SEF14) putative tip adhesin, SefD.


Subject(s)
Cell Adhesion Molecules/chemistry , Deuterium Oxide/chemistry , Fimbriae Proteins/chemistry , Fimbriae, Bacterial/chemistry , Salmonella enteritidis/metabolism , Crystallization/methods , Crystallography, X-Ray , Protein Multimerization , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...