Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Ophthalmol ; 37(4): 276-286, 2023.
Article in English | MEDLINE | ID: mdl-38155670

ABSTRACT

Retinitis pigmentosa GTPase regulator (RPGR)-related retinopathy is a retinal dystrophy inherited in a X-linked recessive manner that typically causes progressive visual loss starting in childhood with severe visual impairment by the fourth decade of life. It manifests as an early onset and severe form of retinitis pigmentosa. There are currently no effective treatments for RPGR-related retinopathy; however, there are multiple clinical trials in progress exploring gene augmentation therapy aimed at slowing down or halting the progression of disease and possibly restoring visual function. This review focuses on the molecular biology, clinical manifestations, and the recent progress of gene therapy clinical trials.

2.
Saudi J Ophthalmol ; 37(4): 287-295, 2023.
Article in English | MEDLINE | ID: mdl-38155675

ABSTRACT

The BEST1 gene encodes bestrophin-1, a homopentameric ion channel expressed in the retinal pigment epithelium (RPE), where it localizes to the basolateral plasma membrane. Pathogenic variants in this gene can cause different autosomal dominant and recessive inherited retinal diseases (IRDs), collectively named "bestrophinopathies." These disorders share a number of clinical and molecular features that make them an appealing target for gene therapy. Clinically, bestrophinopathies are often slowly progressive with a wide window of opportunity, and the presence of subretinal material (vitelliform deposits and/or fluid) as a hallmark of these conditions provides an easily quantifiable endpoint in view of future clinical trials. From a molecular standpoint, most BEST1 pathogenic variants have been shown to cause either loss of function (LOF) of the protein or a dominant-negative (DN) effect, with a smaller subset causing a toxic gain of function (GOF). Both LOF and DN mutations may be amenable to gene augmentation alone. On the other hand, individuals harboring GOF variants would require a combination of gene silencing and gene augmentation, which has been shown to be effective in RPE cells derived from patients with Best disease. In this article, we review the current knowledge of BEST1-related IRDs and we discuss how their molecular and clinical features are being used to design novel and promising therapeutic strategies.

SELECTION OF CITATIONS
SEARCH DETAIL
...