Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Adv Neurol Disord ; 16: 17562864221143834, 2023.
Article in English | MEDLINE | ID: mdl-36846471

ABSTRACT

Background: Due to the absence of robust biomarkers, and the low sensitivity and specificity of routine imaging techniques, the differential diagnosis between Parkinson's disease (PD) and multiple system atrophy (MSA) is challenging. High-field magnetic resonance imaging (MRI) opened up new possibilities regarding the analysis of pathological alterations associated with neurodegenerative processes. Recently, we have shown that quantitative susceptibility mapping (QSM) enables visualization and quantification of two major histopathologic hallmarks observed in MSA: reduced myelin density and iron accumulation in the basal ganglia of a transgenic murine model of MSA. It is therefore emerging as a promising imaging modality on the differential diagnosis of Parkinsonian syndromes. Objectives: To assess QSM on high-field MRI for the differential diagnosis of PD and MSA. Methods: We assessed 23 patients (nine PDs and 14 MSAs) and nine controls using QSM on 3T and 7T MRI scanners at two academic centers. Results: We observed increased susceptibility in MSA at 3T in prototypical subcortical and brainstem regions. Susceptibility measures of putamen, pallidum, and substantia nigra reached excellent diagnostic accuracy to separate both synucleinopathies. Increase toward 100% sensitivity and specificity was achieved using 7T MRI in a subset of patients. Magnetic susceptibility correlated with age in all groups, but not with disease duration in MSA. Sensitivity and specificity were particularly high for possible MSA, and reached 100% in the putamen. Conclusion: Putaminal susceptibility measures, in particular on ultra-high-field MRI, may distinguish MSA patients from both, PD and controls, allowing an early and sensitive diagnosis of MSA.

2.
J Neurosci ; 42(40): 7673-7688, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36333098

ABSTRACT

As the CNS-resident macrophages and member of the myeloid lineage, microglia fulfill manifold functions important for brain development and homeostasis. In the context of neurodegenerative diseases, they have been implicated in degenerative and regenerative processes. The discovery of distinct activation patterns, including increased phagocytosis, indicated a damaging role of myeloid cells in multiple system atrophy (MSA), a devastating, rapidly progressing atypical parkinsonian disorder. Here, we analyzed the gene expression profile of microglia in a mouse model of MSA (MBP29-hα-syn) and identified a disease-associated expression profile and upregulation of the colony-stimulating factor 1 (Csf1). Thus, we hypothesized that CSF1 receptor-mediated depletion of myeloid cells using PLX5622 modifies the disease progression and neuropathological phenotype in this mouse model. Intriguingly, sex-balanced analysis of myeloid cell depletion in MBP29-hα-syn mice revealed a two-faced outcome comprising an improved survival rate accompanied by a delayed onset of neurological symptoms in contrast to severely impaired motor functions. Furthermore, PLX5622 reversed gene expression profiles related to myeloid cell activation but reduced gene expression associated with transsynaptic signaling and signal release. While transcriptional changes were accompanied by a reduction of dopaminergic neurons in the SNpc, striatal neuritic density was increased upon myeloid cell depletion in MBP29-hα-syn mice. Together, our findings provide insight into the complex, two-faced role of myeloid cells in the context of MSA emphasizing the importance to carefully balance the beneficial and adverse effects of CSF1R inhibition in different models of neurodegenerative disorders before its clinical translation.SIGNIFICANCE STATEMENT Myeloid cells have been implicated as detrimental in the disease pathogenesis of multiple system atrophy. However, long-term CSF1R-dependent depletion of these cells in a mouse model of multiple system atrophy demonstrates a two-faced effect involving an improved survival associated with a delayed onset of disease and reduced inflammation which was contrasted by severely impaired motor functions, synaptic signaling, and neuronal circuitries. Thus, this study unraveled a complex role of myeloid cells in multiple system atrophy, which indicates important functions beyond the previously described disease-associated, destructive phenotype and emphasized the need of further investigation to carefully and individually fine-tune immunologic processes in different neurodegenerative diseases.


Subject(s)
Multiple System Atrophy , Animals , Mice , Multiple System Atrophy/genetics , Longevity , Organic Chemicals/pharmacology , Microglia/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Disease Models, Animal , Myeloid Cells/metabolism , Receptors, Colony-Stimulating Factor
3.
J Parkinsons Dis ; 11(4): 2035-2045, 2021.
Article in English | MEDLINE | ID: mdl-34366379

ABSTRACT

BACKGROUND: There is growing interest in non-motor symptoms in Parkinson's disease (PD), due to the impact on quality of life. Anhedonia, the inability to experience joy and lust, has a prevalence of up to 46% in PD. The perception of pleasantness of an odor is reduced in anhedonia without PD. We previously showed a reduced hedonic olfactory perception in PD, i.e., patients evaluated odors as less pleasant or unpleasant compared to controls. This deficit correlated with anhedonia. OBJECTIVE: We aimed to confirm these findings. Moreover, we hypothesized that the perception of pleasantness in PD is affected on a multisensory level and correlates with anhedonia. Therefore, we assessed olfactory, visual and acoustic evaluation of pleasantness in PD and healthy individuals. METHODS: Participants had to rate the pleasantness of 22 odors, pictures, and sounds on a nine-point Likert scale. Depression, anhedonia, and apathy were assessed by means of questionnaires. Results of the pleasantness-rating were compared between groups and correlated to scores of the questionnaires. RESULTS: In particular pleasant and unpleasant stimuli across all three modalities are perceived less intense in PD, suggesting that a reduced range of perception of pleasantness is a multisensory phenomenon. However, only a reduction of visual hedonic perception correlated with anhedonia in PD. A correlation of reduced perception of pleasantness with apathy or depression was not present. CONCLUSION: We provide evidence for a multisensory deficit in the perception of pleasantness. Further studies should delineate the underlying neural circuity and the diagnostic value to detect neuropsychiatric symptoms in PD.


Subject(s)
Anhedonia , Olfactory Perception , Parkinson Disease , Humans , Parkinson Disease/complications , Quality of Life , Smell
4.
Ann Neurol ; 89(1): 74-90, 2021 01.
Article in English | MEDLINE | ID: mdl-32996158

ABSTRACT

OBJECTIVE: Parkinson disease (PD) has useful symptomatic treatments that do not slow the neurodegenerative process, and no significant disease-modifying treatments are approved. A key therapeutic target in PD is α-synuclein (αS), which is both genetically implicated and accumulates in Lewy bodies rich in vesicles and other lipid membranes. Reestablishing αS homeostasis is a central goal in PD. Based on previous lipidomic analyses, we conducted a mouse trial of a stearoyl-coenzyme A desaturase (SCD) inhibitor ("5b") that prevented αS-positive vesicular inclusions and cytotoxicity in cultured human neurons. METHODS: Oral dosing and brain activity of 5b were established in nontransgenic mice. 5b in drinking water was given to mice expressing wild-type human αS (WT) or an amplified familial PD αS mutation (E35K + E46K + E61K ["3K"]) beginning near the onset of nigral and cortical neurodegeneration and the robust PD-like motor syndrome in 3K. Motor phenotypes, brain cytopathology, and SCD-related lipid changes were quantified in 5b- versus placebo-treated mice. Outcomes were compared to effects of crossing 3K to SCD1-/- mice. RESULTS: 5b treatment reduced αS hyperphosphorylation in E46K-expressing human neurons, in 3K neural cultures, and in both WT and 3K αS mice. 5b prevented subtle gait deficits in WT αS mice and the PD-like resting tremor and progressive motor decline of 3K αS mice. 5b also increased αS tetramers and reduced proteinase K-resistant lipid-rich aggregates. Similar benefits accrued from genetically deleting 1 SCD allele, providing target validation. INTERPRETATION: Prolonged reduction of brain SCD activity prevented PD-like neuropathology in multiple PD models. Thus, an orally available SCD inhibitor potently ameliorates PD phenotypes, positioning this approach to treat human α-synucleinopathies. ANN NEUROL 2021;89:74-90.


Subject(s)
Parkinson Disease/prevention & control , alpha-Synuclein/genetics , Animals , Brain/pathology , Humans , Lewy Bodies/pathology , Mice, Transgenic , Neurons/metabolism , Parkinson Disease/genetics , Phenotype , alpha-Synuclein/metabolism
5.
Exp Neurol ; 329: 113314, 2020 07.
Article in English | MEDLINE | ID: mdl-32302677

ABSTRACT

Despite internationally established diagnostic criteria, multiple system atrophy (MSA) is frequently misdiagnosed, particularly at disease onset. While neuropathological changes such as demyelination and iron deposition are typically detected in MSA, these structural hallmarks were so far only demonstrated post-mortem. Here, we examine whether myelin deficit observed in a transgenic murine model of MSA can be visualized and quantified in vivo using specific magnetic resonance imaging (MRI) approaches. Reduced myelin content was measured histologically in prototypical white matter as well as mixed grey-white matter regions i.e. corpus callosum, anterior commissure, and striatum of transgenic mice overexpressing human α-synuclein under the control of the myelin basic protein promotor (MBP29-hα-syn mice). Correspondingly, in vivo quantitative susceptibility mapping (QSM) showed a strongly reduced susceptibility contrast in white matter regions and T2-weighted MR imaging revealed a significantly reduced grey-white matter contrast in MBP29-hα-syn mice. In addition, morphological analysis suggested a pronounced, white matter-specific deposition of iron in MBP29-hα-syn mice. Importantly, in vivo MRI results were matched by comprehensive structural characterization of myelin, iron, and axonal directionality. Taken together, our results provide strong evidence that QSM is a very sensitive tool measuring changes in myelin density in conjunction with iron deposition in MBP29-hα-syn mice. This multimodal neuroimaging approach may pave the way towards a novel non-invasive technique to detect crucial neuropathological changes specifically associated with MSA.


Subject(s)
Brain Mapping/methods , Iron/metabolism , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/metabolism , Nerve Fibers, Myelinated/metabolism , Nerve Fibers, Myelinated/pathology , Animals , Magnetic Resonance Imaging/methods , Mice , Mice, Transgenic , Multiple System Atrophy/genetics , Myelin Sheath/metabolism , Myelin Sheath/pathology , White Matter/diagnostic imaging , White Matter/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...