Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 26(7): 775-84, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22368057

ABSTRACT

RATIONALE: The Amazon River is a huge network of long tributaries, and little is known about the headwaters. Here we present a study of one wet tropical Amazon forest side, and one dry and cold Atiplano plateau, originating from the same cordillera. The aim is to see how this difference affects the water characteristics. METHODS: Different kind of water (spring, lake, river, rainfall) were sampled to determine their stable isotopes ratios (oxygen 18/16 and hydrogen 2/1) by continuous flow isotope ratio mass spectrometry (IRMS). These ratios coupled with chemical analysis enabled us to determine the origin of the water, the evaporation process and the water recycling over the Amazon plain forest and montane cloud forest. RESULTS: Our study shows that the water flowing in the upper Madre de Dios basin comes mainly from the foothill humid forest, with a characteristic water recycling process signature, and not from higher glacier melt. On the contrary, the water flowing in the Altiplano Rivers is mainly from glacier melts, with a high evaporation process. This snow and glacier are fed mainly by Atlantic moisture which transits over the large Amazon forest. CONCLUSIONS: The Atlantic moisture and its recycling over this huge tropical forest display a progressive isotopic gradient, as a function of distance from the ocean. At the level of the montane cloud forest and on the altiplano, respectively, additional water recycling and evaporation occur, but they are insignificant in the total water discharge.


Subject(s)
Isotopes/analysis , Rivers/chemistry , Altitude , Environment , Ions/analysis , Mass Spectrometry , Peru , Water Cycle , Water Movements , Weather
SELECTION OF CITATIONS
SEARCH DETAIL