Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 21(21)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142786

ABSTRACT

Platelets are exposed to extracellular matrix (ECM) proteins like collagen and laminin and to fibrinogen during acute vascular events. However, beyond hemostasis, platelets have the important capacity to migrate on ECM surfaces, but the translational response of platelets to different extracellular matrix stimuli is still not fully characterized. Using 2D-gel electrophoresis, confocal microscopy, polysome analysis and protein sequencing by mass spectrometry, we demonstrate that platelets show a differential expression profile of newly synthesized proteins on laminin, collagen or fibrinogen. In this context, we observed a characteristic, ECM-dependent translocation phenotype of translation initiation factor eIF4E to the ribosomal site. eIF4E accumulated in polysomes with increased binding of mRNA and co-localization with vinculin, leading to de novo synthesis of important cytoskeletal regulator proteins. As the first study, we included a proteome analysis of laminin-adherent platelets and interestingly identified upregulation of essentially important proteins that mediate cytoskeletal regulation and mobility in platelets, such as filamin A, talin, vinculin, gelsolin, coronin or kindlin-3. In summary, we demonstrate that platelet activation with extracellular matrix proteins results in a distinct stimulus-specific translational response of platelets that will help to improve our understanding of the regulation of platelet mobility and migration.


Subject(s)
Blood Platelets/physiology , Cytoskeletal Proteins/metabolism , Extracellular Matrix/metabolism , Platelet Activation , Protein Biosynthesis , Protein Processing, Post-Translational , Blood Platelets/cytology , Collagen/metabolism , Cytoskeleton/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Fibrinogen/metabolism , Hemostasis , Humans
2.
Int J Mol Sci ; 20(24)2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31817594

ABSTRACT

Kindlins are important proteins for integrin signaling and regulation of the cytoskeleton, but we know little about their precise function and regulation in platelets during acute ischemic events. In this work, we investigated kindlin-3 protein levels in platelets isolated from patients with ST-elevation myocardial infarction (STEMI) compared to patients with non-ischemic chest pain. Platelets from twelve patients with STEMI and twelve patients with non-ischemic chest pain were isolated and analyzed for kindlin-3 protein levels and intracellular localization by immunoblotting and two-dimensional gel electrophoresis. Platelet proteome analysis by two-dimensional gel electrophoresis and protein sequencing identified kindlin-3 as a protein that is cleaved in platelets from patients with myocardial infarction. Kindlin-3 full-length protein was significantly decreased in patients with STEMI compared to patients with non-ischemic chest pain (1.0 ± 0.2 versus 0.28 ± 0.2, p < 0.05) by immunoblotting. Kindlin-3 showed a differential distribution and was primarily cleaved in the cytosolic and membrane compartment of platelets in myocardial infarction. Platelet activation with thrombin alone did not affect kindlin-3 protein levels. The present study demonstrates that kindlin-3 protein levels become significantly reduced in platelets of patients with myocardial infarction compared to controls. The results suggest that kindlin-3 cleavage in platelets is associated with the ischemic event of myocardial infarction.


Subject(s)
Blood Platelets/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , ST Elevation Myocardial Infarction/metabolism , Aged , Blood Platelets/drug effects , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Immunoblotting , Male , Middle Aged , Thrombin/pharmacology
3.
Int J Mol Sci ; 20(23)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783528

ABSTRACT

Heat-shock proteins are a family of proteins which are upregulated in response to stress stimuli including inflammation, oxidative stress, or ischemia. Protective functions of heat-shock proteins have been studied in vascular disease models, and malfunction of heat-shock proteins is associated with vascular disease development. Heat-shock proteins however have not been investigated in human platelets during acute myocardial infarction ex vivo. Using two-dimensional electrophoresis and immunoblotting, we observed that heat-shock protein 27 (HSPB1) levels and phosphorylation are significantly increased in platelets of twelve patients with myocardial infarction compared to patients with nonischemic chest pain (6.4 ± 1.0-fold versus 1.0 ± 0.9-fold and 5.9 ± 1.8-fold versus 1.0 ± 0.8-fold; p < 0.05). HSP27 (HSPB1) showed a distinct and characteristic intracellular translocation from the cytoskeletal fraction into the membrane fraction of platelets during acute myocardial infarction that did not occur in the control group. In this study, we could demonstrate for the first time that HSP27 (HSPB1) is upregulated and phosphorylated in human platelets during myocardial infarction on a cellular level ex vivo with a characteristic intracellular translocation pattern. This HSP27 (HSPB1) phenotype in platelets could thus represent a measurable stress response in myocardial infarction and potentially other acute ischemic events.


Subject(s)
Blood Platelets/metabolism , Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Phosphorylation/genetics , ST Elevation Myocardial Infarction/genetics , Up-Regulation/genetics , Cytoskeleton/genetics , Female , HSP27 Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Humans , Male , Middle Aged , Oxidative Stress/genetics , Transcriptional Activation/genetics
4.
Biochim Biophys Acta Biomembr ; 1859(10): 1859-1871, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28502790

ABSTRACT

Regulated intramembrane proteolysis by members of the site-2 protease family (S2P) is an essential signal transduction mechanism conserved from bacteria to humans. There is some evidence that extra-membranous domains, like PDZ and CBS domains, regulate the proteolytic activity of S2Ps and that some members act as dimers. Here we report the crystal structure of the regulatory CBS domain pair of S2P from Archaeoglobus fulgidus, AfS2P, in the apo and nucleotide-bound form in complex with a specific nanobody from llama. Cross-linking and SEC-MALS analyses show for the first time the dimeric architecture of AfS2P both in the membrane and in detergent micelles. The CBS domain pair dimer (CBS module) displays an unusual head-to-tail configuration and nucleotide binding triggers no major conformational changes in the magnesium-free state. In solution, MgATP drives monomerization of the CBS module. We propose a model of the so far unknown architecture of the transmembrane domain dimer and for a regulatory mechanism of AfS2P that involves the interaction of positively charged arginine residues located at the cytoplasmic face of the transmembrane domain with the negatively charged phosphate groups of ATP moieties bound to the CBS domain pairs. Binding of MgATP could promote opening of the CBS module to allow lateral access of the globular cytoplasmic part of the substrate.


Subject(s)
Peptide Hydrolases/chemistry , Adenosine Triphosphate/chemistry , Archaeoglobus fulgidus/chemistry , Arginine/chemistry , Crystallography/methods , Cytoplasm/chemistry , Magnesium/chemistry , Membrane Proteins/chemistry , Membranes/chemistry , Micelles , Nucleotides/chemistry , Protein Binding , Protein Structure, Tertiary , Signal Transduction/physiology
5.
Am J Hum Genet ; 99(3): 647-665, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27499521

ABSTRACT

Homozygous loss of SMN1 causes spinal muscular atrophy (SMA), the most common and devastating childhood genetic motor-neuron disease. The copy gene SMN2 produces only ∼10% functional SMN protein, insufficient to counteract development of SMA. In contrast, the human genetic modifier plastin 3 (PLS3), an actin-binding and -bundling protein, fully protects against SMA in SMN1-deleted individuals carrying 3-4 SMN2 copies. Here, we demonstrate that the combinatorial effect of suboptimal SMN antisense oligonucleotide treatment and PLS3 overexpression-a situation resembling the human condition in asymptomatic SMN1-deleted individuals-rescues survival (from 14 to >250 days) and motoric abilities in a severe SMA mouse model. Because PLS3 knockout in yeast impairs endocytosis, we hypothesized that disturbed endocytosis might be a key cellular mechanism underlying impaired neurotransmission and neuromuscular junction maintenance in SMA. Indeed, SMN deficit dramatically reduced endocytosis, which was restored to normal levels by PLS3 overexpression. Upon low-frequency electro-stimulation, endocytotic FM1-43 (SynaptoGreen) uptake in the presynaptic terminal of neuromuscular junctions was restored to control levels in SMA-PLS3 mice. Moreover, proteomics and biochemical analysis revealed CORO1C, another F-actin binding protein, whose direct binding to PLS3 is dependent on calcium. Similar to PLS3 overexpression, CORO1C overexpression restored fluid-phase endocytosis in SMN-knockdown cells by elevating F-actin amounts and rescued the axonal truncation and branching phenotype in Smn-depleted zebrafish. Our findings emphasize the power of genetic modifiers to unravel the cellular pathomechanisms underlying SMA and the power of combinatorial therapy based on splice correction of SMN2 and endocytosis improvement to efficiently treat SMA.


Subject(s)
Endocytosis/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Actins/metabolism , Animals , Axons/pathology , Calcium/metabolism , Carrier Proteins , Disease Models, Animal , Humans , Male , Mice , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Oligonucleotides, Antisense , Phenotype , Presynaptic Terminals/metabolism , Pyridinium Compounds/metabolism , Quaternary Ammonium Compounds/metabolism , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics , Synaptic Transmission/genetics , Zebrafish/genetics , Zebrafish/metabolism
7.
PLoS One ; 10(6): e0131614, 2015.
Article in English | MEDLINE | ID: mdl-26121620

ABSTRACT

While it is well established that human cytomegalovirus (HCMV) upregulates many cellular proteins and incorporates several of them into its virion, little is known about the functional relevance of such virus-host interactions. Two cellular proteins, Grb2 and DDX3, gained our interest as they appeared enriched in virion particles and this incorporation depended on the viral tegument protein pp65, suggesting a functional relevance. We therefore tested whether the level of these proteins is altered upon HCMV infection and whether they support viral replication. Immunoblotting analyses of cellular fractions showed increased levels of both proteins in infected cells with a maximum at 2 d p.i. and a reduction of the soluble Grb2 fraction. Knockdown of either gene by transfection of siRNAs reduced viral spread not only of the cell culture adapted HCMV strain TB40/E but also of recent clinical isolates. Apparently, Grb2 and DDX3 are proviral cellular factors that are upregulated in infected cells.


Subject(s)
Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , DEAD-box RNA Helicases/metabolism , GRB2 Adaptor Protein/metabolism , Cell Line , DEAD-box RNA Helicases/genetics , GRB2 Adaptor Protein/genetics , Gene Knockdown Techniques , Humans , Phosphoproteins/metabolism , Protein Binding , Proviruses/genetics , Proviruses/metabolism , Up-Regulation , Viral Matrix Proteins/metabolism , Virion , Virus Assembly , Virus Replication
8.
Cell Rep ; 10(6): 843-853, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25683707

ABSTRACT

Mitochondria contain their own genetic system that provides subunits of the complexes driving oxidative phosphorylation. A quarter of the mitochondrial proteome participates in gene expression, but how all these factors are orchestrated and spatially organized is currently unknown. Here, we established a method to purify and analyze native and intact complexes of mitochondrial ribosomes. Quantitative mass spectrometry revealed extensive interactions of ribosomes with factors involved in all the steps of posttranscriptional gene expression. These interactions result in large expressosome-like assemblies that we termed mitochondrial organization of gene expression (MIOREX) complexes. Superresolution microscopy revealed that most MIOREX complexes are evenly distributed throughout the mitochondrial network, whereas a subset is present as nucleoid-MIOREX complexes that unite the whole spectrum of organellar gene expression. Our work therefore provides a conceptual framework for the spatial organization of mitochondrial protein synthesis that likely developed to facilitate gene expression in the organelle.

9.
Proteomics ; 15(7): 1326-31, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25420462

ABSTRACT

Glomerular biology is dependent on tightly controlled signal transduction networks that control phosphorylation of signaling proteins such as cytoskeletal regulators or slit diaphragm proteins of kidney podocytes. Cross-species comparison of phosphorylation events is a powerful mean to functionally prioritize and identify physiologically meaningful phosphorylation sites. Here, we present the result of phosphoproteomic analyses of cow and rat glomeruli to allow cross-species comparisons. We discovered several phosphorylation sites with potentially high biological relevance, e.g. tyrosine phosphorylation of the cytoskeletal regulator synaptopodin and the slit diaphragm protein neph-1 (Kirrel). Moreover, cross-species comparisons revealed conserved phosphorylation of the slit diaphragm protein nephrin on an acidic cluster at the intracellular terminus and conserved podocin phosphorylation on the very carboxyl terminus of the protein. We studied a highly conserved podocin phosphorylation site in greater detail and show that phosphorylation regulates affinity of the interaction with nephrin and CD2AP. Taken together, these results suggest that species comparisons of phosphoproteomic data may reveal regulatory principles in glomerular biology. All MS data have been deposited in the ProteomeXchange with identifier PXD001005 (http://proteomecentral.proteomexchange.org/dataset/PXD001005).


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Kidney Glomerulus/metabolism , Membrane Proteins/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence , Animals , Conserved Sequence , Humans , Molecular Sequence Data , Phosphoproteins/metabolism , Phosphorylation , Protein Structure, Tertiary , Proteome , Proteomics , Species Specificity
10.
J Biol Chem ; 289(38): 26344-26356, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25100726

ABSTRACT

Tight regulation of Wnt/ß-catenin signaling is critical for vertebrate development and tissue maintenance, and deregulation can lead to a host of disease phenotypes, including developmental disorders and cancer. Proteins associated with primary cilia and centrosomes have been demonstrated to negatively regulate canonical Wnt signaling in interphase cells. The plant homeodomain zinc finger protein Jade-1 can act as an E3 ubiquitin ligase-targeting ß-catenin for proteasomal degradation and concentrates at the centrosome and ciliary basal body in addition to the nucleus in interphase cells. We demonstrate that the destruction complex component casein kinase 1α (CK1α) phosphorylates Jade-1 at a conserved SLS motif and reduces the ability of Jade-1 to inhibit ß-catenin signaling. Consistently, Jade-1 lacking the SLS motif is more effective than wild-type Jade-1 in reducing ß-catenin-induced secondary axis formation in Xenopus laevis embryos in vivo. Interestingly, CK1α also phosphorylates ß-catenin and the destruction complex component adenomatous polyposis coli at a similar SLS motif to the effect that ß-catenin is targeted for degradation. The opposing effect of Jade-1 phosphorylation by CK1α suggests a novel example of the dual functions of CK1α activity to either oppose or promote canonical Wnt signaling in a context-dependent manner.


Subject(s)
Casein Kinase Ialpha/physiology , Homeodomain Proteins/metabolism , Protein Processing, Post-Translational , Tumor Suppressor Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Conserved Sequence , Enzyme Repression , Gene Expression , HEK293 Cells , Humans , Molecular Sequence Data , Phosphorylation , Wnt Signaling Pathway , Xenopus laevis , beta Catenin/metabolism
11.
EMBO J ; 33(19): 2171-87, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25056906

ABSTRACT

The X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti-apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase-mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP-mediated immune response by inducing the BID-dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain-dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization.


Subject(s)
BH3 Interacting Domain Death Agonist Protein/physiology , Carrier Proteins/metabolism , Dysentery, Bacillary/immunology , Mitochondria/immunology , Mitochondrial Proteins/metabolism , Shigella/immunology , X-Linked Inhibitor of Apoptosis Protein/physiology , Animals , Apoptosis , Apoptosis Regulatory Proteins , Blotting, Western , Caspases/metabolism , Cell Proliferation , Cells, Cultured , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/pathology , Female , Hepatocytes/immunology , Hepatocytes/metabolism , Hepatocytes/pathology , Immunoenzyme Techniques , Integrases/metabolism , Male , Membrane Potential, Mitochondrial , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/immunology , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Shigella/pathogenicity , Signal Transduction , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
12.
PLoS Biol ; 12(7): e1001908, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25025157

ABSTRACT

Postsynaptic scaffolding proteins regulate coordinated neurotransmission by anchoring and clustering receptors and adhesion molecules. Gephyrin is the major instructive molecule at inhibitory synapses, where it clusters glycine as well as major subsets of GABA type A receptors (GABAARs). Here, we identified palmitoylation of gephyrin as an important mechanism of strengthening GABAergic synaptic transmission, which is regulated by GABAAR activity. We mapped palmitoylation to Cys212 and Cys284, which are critical for both association of gephyrin with the postsynaptic membrane and gephyrin clustering. We identified DHHC-12 as the principal palmitoyl acyltransferase that palmitoylates gephyrin. Furthermore, gephyrin pamitoylation potentiated GABAergic synaptic transmission, as evidenced by an increased amplitude of miniature inhibitory postsynaptic currents. Consistently, inhibiting gephyrin palmitoylation either pharmacologically or by expression of palmitoylation-deficient gephyrin reduced the gephyrin cluster size. In aggregate, our study reveals that palmitoylation of gephyrin by DHHC-12 contributes to dynamic and functional modulation of GABAergic synapses.


Subject(s)
Acyltransferases/physiology , Carrier Proteins/metabolism , Lipoylation/physiology , Membrane Proteins/metabolism , Neuronal Plasticity/physiology , Receptors, GABA-A/metabolism , Synapses/physiology , Animals , Cysteine/metabolism , Hippocampus/metabolism , Humans , Mice , gamma-Aminobutyric Acid
13.
Cell Metab ; 20(1): 158-71, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24856930

ABSTRACT

Prohibitins form large protein and lipid scaffolds in the inner membrane of mitochondria that are required for mitochondrial morphogenesis, neuronal survival, and normal lifespan. Here, we have defined the interactome of PHB2 in mitochondria and identified DNAJC19, mutated in dilated cardiomyopathy with ataxia, as binding partner of PHB complexes. We observed impaired cell growth, defective cristae morphogenesis, and similar transcriptional responses in the absence of either DNAJC19 or PHB2. The loss of PHB/DNAJC19 complexes affects cardiolipin acylation and leads to the accumulation of cardiolipin species with altered acyl chains. Similar defects occur in cells lacking the transacylase tafazzin, which is mutated in Barth syndrome. Our experiments suggest that PHB/DNAJC19 membrane domains regulate cardiolipin remodeling by tafazzin and explain similar clinical symptoms in two inherited cardiomyopathies by an impaired cardiolipin metabolism in mitochondrial membranes.


Subject(s)
Cardiolipins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Acyltransferases , Amino Acid Sequence , Animals , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Cell Line , HEK293 Cells , Humans , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Metalloendopeptidases/metabolism , Mice , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Molecular Sequence Data , Prohibitins , RNA Interference , RNA, Small Interfering/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism
14.
PLoS Genet ; 10(4): e1004287, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24722212

ABSTRACT

The steroid hormone ecdysone coordinates insect growth and development, directing the major postembryonic transition of forms, metamorphosis. The steroid-deficient ecdysoneless1 (ecd1) strain of Drosophila melanogaster has long served to assess the impact of ecdysone on gene regulation, morphogenesis, or reproduction. However, ecd also exerts cell-autonomous effects independently of the hormone, and mammalian Ecd homologs have been implicated in cell cycle regulation and cancer. Why the Drosophila ecd1 mutants lack ecdysone has not been resolved. Here, we show that in Drosophila cells, Ecd directly interacts with core components of the U5 snRNP spliceosomal complex, including the conserved Prp8 protein. In accord with a function in pre-mRNA splicing, Ecd and Prp8 are cell-autonomously required for survival of proliferating cells within the larval imaginal discs. In the steroidogenic prothoracic gland, loss of Ecd or Prp8 prevents splicing of a large intron from CYP307A2/spookier (spok) pre-mRNA, thus eliminating this essential ecdysone-biosynthetic enzyme and blocking the entry to metamorphosis. Human Ecd (hEcd) can substitute for its missing fly ortholog. When expressed in the Ecd-deficient prothoracic gland, hEcd re-establishes spok pre-mRNA splicing and protein expression, restoring ecdysone synthesis and normal development. Our work identifies Ecd as a novel pre-mRNA splicing factor whose function has been conserved in its human counterpart. Whether the role of mammalian Ecd in cancer involves pre-mRNA splicing remains to be discovered.


Subject(s)
Drosophila Proteins/genetics , RNA Precursors/genetics , RNA Splicing/genetics , Steroids/metabolism , Animals , Cell Cycle/genetics , Cells, Cultured , Drosophila melanogaster/genetics , Ecdysone/genetics , Gene Expression Regulation, Developmental/genetics , Larva/genetics , Mutation/genetics , Ribonucleoproteins, Small Nuclear/genetics , Spliceosomes/genetics
15.
J Biol Chem ; 289(16): 11262-11271, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24596097

ABSTRACT

Mutations in the NPHS2 gene are a major cause of steroid-resistant nephrotic syndrome, a severe human kidney disorder. The NPHS2 gene product podocin is a key component of the slit diaphragm cell junction at the kidney filtration barrier and part of a multiprotein-lipid supercomplex. A similar complex with the podocin ortholog MEC-2 is required for touch sensation in Caenorhabditis elegans. Although podocin and MEC-2 are membrane-associated proteins with a predicted hairpin-like structure and amino and carboxyl termini facing the cytoplasm, this membrane topology has not been convincingly confirmed. One particular mutation that causes kidney disease in humans (podocin(P118L)) has also been identified in C. elegans in genetic screens for touch insensitivity (MEC-2(P134S)). Here we show that both mutant proteins, in contrast to the wild-type variants, are N-glycosylated because of the fact that the mutant C termini project extracellularly. Podocin(P118L) and MEC-2(P134S) did not fractionate in detergent-resistant membrane domains. Moreover, mutant podocin failed to activate the ion channel TRPC6, which is part of the multiprotein-lipid supercomplex, indicative of the fact that cholesterol recruitment to the ion channels, an intrinsic function of both proteins, requires C termini facing the cytoplasmic leaflet of the plasma membrane. Taken together, this study demonstrates that the carboxyl terminus of podocin/MEC-2 has to be placed at the inner leaflet of the plasma membrane to mediate cholesterol binding and contribute to ion channel activity, a prerequisite for mechanosensation and the integrity of the kidney filtration barrier.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Cell Membrane/metabolism , Glomerular Filtration Barrier/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mechanotransduction, Cellular , Membrane Proteins/metabolism , Mutation, Missense , Amino Acid Substitution , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Cell Line , Cell Membrane/genetics , Cell Membrane/pathology , Cholesterol/genetics , Cholesterol/metabolism , Glomerular Filtration Barrier/pathology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Nephrotic Syndrome/congenital , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Nephrotic Syndrome/pathology , Prohibitins , Protein Structure, Tertiary
16.
J Am Soc Nephrol ; 25(7): 1509-22, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24511133

ABSTRACT

Diseases of the kidney filtration barrier are a leading cause of ESRD. Most disorders affect the podocytes, polarized cells with a limited capacity for self-renewal that require tightly controlled signaling to maintain their integrity, viability, and function. Here, we provide an atlas of in vivo phosphorylated, glomerulus-expressed proteins, including podocyte-specific gene products, identified in an unbiased tandem mass spectrometry-based approach. We discovered 2449 phosphorylated proteins corresponding to 4079 identified high-confidence phosphorylated residues and performed a systematic bioinformatics analysis of this dataset. We discovered 146 phosphorylation sites on proteins abundantly expressed in podocytes. The prohibitin homology domain of the slit diaphragm protein podocin contained one such site, threonine 234 (T234), located within a phosphorylation motif that is mutated in human genetic forms of proteinuria. The T234 site resides at the interface of podocin dimers. Free energy calculation through molecular dynamic simulations revealed a role for T234 in regulating podocin dimerization. We show that phosphorylation critically regulates formation of high molecular weight complexes and that this may represent a general principle for the assembly of proteins containing prohibitin homology domains.


Subject(s)
Glomerular Filtration Barrier/physiology , Phosphoproteins/analysis , Phosphoproteins/physiology , Proteomics , Animals , Female , Intracellular Signaling Peptides and Proteins/physiology , Membrane Proteins/physiology , Mice , Phosphorylation , Podocytes/physiology
17.
Am J Physiol Cell Physiol ; 306(9): C805-18, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24573087

ABSTRACT

The function of an individual protein is typically defined by protein-protein interactions orchestrating the formation of large complexes critical for a wide variety of biological processes. Over the last decade the analysis of purified protein complexes by mass spectrometry became a key technique to identify protein-protein interactions. We present a fast and straightforward approach for analyses of interacting proteins combining a Flp-in single-copy cellular integration system and single-step affinity purification with single-shot mass spectrometry analysis. We applied this protocol to the analysis of the YAP and TAZ interactome. YAP and TAZ are the downstream effectors of the mammalian Hippo tumor suppressor pathway. Our study provides comprehensive interactomes for both YAP and TAZ and does not only confirm the majority of previously described interactors but, strikingly, revealed uncharacterized interaction partners that affect YAP/TAZ TEAD-dependent transcription. Among these newly identified candidates are Rassf8, thymopoetin, and the transcription factors CCAAT/enhancer-binding protein (C/EBP)ß/δ and core-binding factor subunit ß (Cbfb). In addition, our data allowed insights into complex stoichiometry and uncovered discrepancies between the YAP and TAZ interactomes. Taken together, the stringent approach presented here could help to significantly sharpen the understanding of protein-protein networks.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Phosphoproteins/metabolism , Protein Interaction Mapping , Protein Interaction Maps , Proteomics , Transcription Factors/metabolism , Acyltransferases , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Animals , Cell Cycle Proteins , Cluster Analysis , Computational Biology , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Hippo Signaling Pathway , Humans , Immunoprecipitation , Mice , Molecular Sequence Data , NIH 3T3 Cells , Phosphoproteins/genetics , Protein Binding , Protein Interaction Mapping/methods , Protein Serine-Threonine Kinases/metabolism , Proteomics/methods , Recombinant Fusion Proteins/metabolism , Signal Transduction , Tandem Mass Spectrometry , Transcription Factors/genetics , Transfection , YAP-Signaling Proteins
18.
PLoS One ; 9(1): e86030, 2014.
Article in English | MEDLINE | ID: mdl-24465852

ABSTRACT

Molybdenum and tungsten cofactors share a similar pterin-based scaffold, which hosts an ene-dithiolate function being essential for the coordination of either molybdenum or tungsten. The biosynthesis of both cofactors involves a multistep pathway, which ends with the activation of the metal binding pterin (MPT) by adenylylation before the respective metal is incorporated. In the hyperthermophilic organism Pyrococcus furiosus, the hexameric protein MoaB (PfuMoaB) has been shown to catalyse MPT-adenylylation. Here we determined the crystal structure of PfuMoaB at 2.5 Å resolution and identified key residues of α3-helix mediating hexamer formation. Given that PfuMoaB homologues from mesophilic organisms form trimers, we investigated the impact on PfuMoaB hexamerization on thermal stability and activity. Using structure-guided mutagenesis, we successfully disrupted the hexamer interface in PfuMoaB. The resulting PfuMoaB-H3 variant formed monomers, dimers and trimers as determined by size exclusion chromatography. Circular dichroism spectroscopy as well as chemical cross-linking coupled to mass spectrometry confirmed a wild-type-like fold of the protomers as well as inter-subunits contacts. The melting temperature of PfuMoaB-H3 was found to be reduced by more than 15 °C as determined by differential scanning calorimetry, thus demonstrating hexamerization as key determinant for PfuMoaB thermal stability. Remarkably, while a loss of activity at temperatures higher than 50 °C was observed in the PfuMoaB-H3 variant, at lower temperatures, we determined a significantly increased catalytic activity. The latter suggests a gain in conformational flexibility caused by the disruption of the hexamerization interface.


Subject(s)
Bacterial Proteins/chemistry , Organometallic Compounds/metabolism , Protein Stability , Pterins/metabolism , Pyrococcus furiosus/chemistry , Transferases/chemistry , Amino Acid Sequence , Bacterial Proteins/metabolism , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Multimerization , Pyrococcus furiosus/metabolism , Temperature , Transferases/metabolism
19.
FASEB J ; 28(4): 1769-79, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24421402

ABSTRACT

Lipid peroxidation through electrophilic molecules of extracellular origin is involved in the pathogenesis of many inflammatory conditions. To counteract free radical actions at the plasma membrane, cells host a variety of antioxidative enzymes. Here we analyzed localization, membrane topology, and trafficking of PON2 a member of the paraoxonase family of 3 enzymatically active proteins (PON1-3) found to have antiatherogenic properties. Immunohistochemistry localized PON2 to the villous tip of human intestinal epithelial cells. Employing membrane preparations, surface biotinylation experiments, and mutational analyses in HEK 293T and HeLa cells, we demonstrate that PON2 is a type II transmembrane protein. A hydrophobic stretch in the N terminus was identified as single transmembrane domain of PON2. The enzymatically active domain faced the extracellular compartment, where it suppressed lipid peroxidation (P<0.05) and regulated the glucosylceramide content, as demonstrated by mass spectrometry (P<0.05). PON2 translocation to the plasma membrane was dependent on intracellular calcium responses and could be induced to >10-fold as compared to baseline (P=0.0001) by oxidative stress. Taken together, these data identify the paraoxonase protein PON2 as a type II transmembrane protein, which is dynamically translocated to the plasma membrane in response to oxidative stress to counteract lipid peroxidation.


Subject(s)
Aryldialkylphosphatase/metabolism , Cell Membrane/metabolism , Lipid Peroxidation , Membrane Proteins/metabolism , Amino Acid Sequence , Animals , Aryldialkylphosphatase/genetics , Calcium/metabolism , Epithelial Cells/enzymology , Glucosylceramides/metabolism , HEK293 Cells , HeLa Cells , Humans , Immunoblotting , Immunohistochemistry , Intestines/cytology , Intestines/enzymology , Membrane Proteins/genetics , Mice , Microscopy, Confocal , Molecular Sequence Data , Oxidative Stress , Protein Transport , RNA Interference
20.
BMC Nephrol ; 14: 102, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23648087

ABSTRACT

BACKGROUND: Steroid resistant nephrotic syndrome is a severe hereditary disease often caused by mutations in the NPHS2 gene. This gene encodes the lipid binding protein podocin which localizes to the slit diaphragm of podocytes and is essential for the maintenance of an intact glomerular filtration barrier. Podocin is a hairpin-like membrane-associated protein that multimerizes to recruit lipids of the plasma membrane. Recent evidence suggested that podocin may exist in a canonical, well-studied large isoform and an ill-defined short isoform. Conclusive proof of the presence of this new podocin protein in the human system is still lacking. METHODS: We used database analyses to identify organisms for which an alternative splice variant has been annotated. Mass spectrometry was employed to prove the presence of the shorter isoform of podocin in human kidney lysates. Immunofluorescence, sucrose density gradient fractionation and PNGase-F assays were used to characterize this short isoform of human podocin. RESULTS: Mass spectrometry revealed the existence of the short isoform of human podocin on protein level. We cloned the coding sequence from a human kidney cDNA library and showed that the expressed short variant was retained in the endoplasmic reticulum while still associating with detergent-resistant membrane fractions in sucrose gradient density centrifugation. The protein is partially N-glycosylated which implies the presence of a transmembranous form of the short isoform. CONCLUSIONS: A second isoform of human podocin is expressed in the kidney. This isoform lacks part of the PHB domain. It can be detected on protein level. Distinct subcellular localization suggests a physiological role for this isoform which may be different from the well-studied canonical variant. Possibly, the short isoform influences lipid and protein composition of the slit diaphragm complex by sequestration of lipid and protein interactors into the endoplasmic reticulum.


Subject(s)
Intracellular Signaling Peptides and Proteins/biosynthesis , Intracellular Signaling Peptides and Proteins/genetics , Kidney/metabolism , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Amino Acid Sequence , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Membrane Proteins/chemistry , Molecular Sequence Data , Prohibitins , Protein Isoforms/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...