Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zoo Biol ; 38(3): 305-315, 2019 May.
Article in English | MEDLINE | ID: mdl-30868683

ABSTRACT

Zoos have played a pivotal role in the successful reinforcement and reintroduction of species threatened with extinction, but prioritization is required in the face of increasing need and limited capacity. One means of prioritizing between species of equal threat status when establishing new breeding programs is the consideration of evolutionary distinctness (ED). More distinct species have fewer close relatives such that their extinction would result in a greater overall loss to the Tree of Life. Considering global ex situ holdings of birds (a group with a complete and well-detailed evolutionary tree), we investigate the representation of at-risk and highly evolutionarily distinct species in global zoo holdings. We identified a total of 2,236 bird species indicated by the Zoological Information Management System as being held in zoological institutions worldwide. As previously reported, imperiled species (defined as those possessing endangered or critically endangered threat status) in this database are less likely to be held in zoos than non-imperiled species. However, we find that species possessing ED scores within the top 10% of all bird species are more likely to be held in zoos than other species, possibly because they possess unique characteristics that have historically made them popular exhibits. To assist with the selection of high priority ED species for future zoo conservation programs, we provide a list of imperiled species currently not held in zoos, ranked by ED. This list highlights species representing particular priorities for ex situ conservation planners, and represents a practical tool for improving the conservation value of zoological collections.


Subject(s)
Birds/classification , Endangered Species , Phylogeny , Animals , Animals, Zoo , Birds/genetics , Breeding , Conservation of Natural Resources/methods
2.
Article in English | MEDLINE | ID: mdl-29581404

ABSTRACT

Social interactions are a significant factor that influence the decision-making of species ranging from humans to bacteria. In the context of animal migration, social interactions may lead to improved decision-making, greater ability to respond to environmental cues, and the cultural transmission of optimal routes. Despite their significance, the precise nature of social interactions in migrating species remains largely unknown. Here we deploy unmanned aerial systems to collect aerial footage of caribou as they undertake their migration from Victoria Island to mainland Canada. Through a Bayesian analysis of trajectories we reveal the fine-scale interaction rules of migrating caribou and show they are attracted to one another and copy directional choices of neighbours, but do not interact through clearly defined metric or topological interaction ranges. By explicitly considering the role of social information on movement decisions we construct a map of near neighbour influence that quantifies the nature of information flow in these herds. These results will inform more realistic, mechanism-based models of migration in caribou and other social ungulates, leading to better predictions of spatial use patterns and responses to changing environmental conditions. Moreover, we anticipate that the protocol we developed here will be broadly applicable to study social behaviour in a wide range of migratory and non-migratory taxa.This article is part of the theme issue 'Collective movement ecology'.


Subject(s)
Animal Migration , Reindeer/physiology , Social Behavior , Animals , Bayes Theorem , Nunavut
SELECTION OF CITATIONS
SEARCH DETAIL
...