Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 21(11)2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27869734

ABSTRACT

The molecular hosts cyclodextrins form inclusion complexes with a wide variety of guests, resulting in complexes with various host:guest stoichiometries. In the case of a series of 19 1,4-naphthoquinolines as guests with either ß- or γ-cyclodextrin studied using electrospray mass spectroscopy, in most cases only 1:1 complexes were observed, with 2:1 host:guest complexes observed in just 6 out of 38 host:guest combinations. It is shown that these higher-order complexes were observed only in the case of small (or no) electronically withdrawing substituents, and were much less likely in the case of the larger γ-cyclodextrin host. The size and electronic properties of the substituents involved shows that both steric and electronic factors must be taken into account in predicting which cyclodextrin host:guest stoichiometries will be stable enough to form (or once formed, be robust enough to be observed in the ESI-MS experiments). It is clear that the prediction of host-guest stoichiometry for a specific host-guest pair is complicated, and involves a subtle interplay of both electronic and steric factors. However, there are definite trends, which can be used to help predict host:guest stoichiometry for a given host-guest pair.


Subject(s)
Naphthoquinones/chemistry , beta-Cyclodextrins/chemistry , gamma-Cyclodextrins/chemistry , Models, Molecular , Molecular Structure , Spectrometry, Mass, Electrospray Ionization/methods
2.
J Physiol ; 594(20): 5991-6008, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27412964

ABSTRACT

KEY POINTS: The cortical collecting duct (CCD) plays an essential role in sodium homeostasis by fine-tuning the amount of sodium that is excreted in the urine. Ex vivo, the microperfused CCD reabsorbs sodium in the absence of lumen-to-bath concentration gradients. In the present study, we show that, in the presence of physiological lumen-to-bath concentration gradients, and in the absence of endocrine, paracrine and neural regulation, the mouse CCD secretes sodium, which represents a paradigm shift. This secretion occurs via the paracellular route, as well as a transcellular pathway that is energized by apical H+ /K+ -ATPase type 2 pumps operating as Na+ /K+ exchangers. The newly identified transcellular secretory pathway represents a physiological target for the regulation of sodium handling and for anti-hypertensive therapeutic agents. ABSTRACT: In vitro microperfusion experiments have demonstrated that cortical collecting ducts (CCDs) reabsorb sodium via principal and type B intercalated cells under sodium-depleted conditions and thereby contribute to sodium and blood pressure homeostasis. However, these experiments were performed in the absence of the transepithelial ion concentration gradients that prevail in vivo and determine paracellular transport. The present study aimed to characterize Na+ , K+ and Cl- fluxes in the mouse CCD in the presence of physiological transepithelial concentration gradients. For this purpose, we combined in vitro measurements of ion fluxes across microperfused CCDs of sodium-depleted mice with the predictions of a mathematical model. When NaCl transport was inhibited in all cells, CCDs secreted Na+ and reabsorbed K+ ; Cl- transport was negligible. Removing inhibitors of type A and B intercalated cells increased Na+ secretion in wild-type (WT) mice but not in H+ /K+ -ATPase type 2 (HKA2) knockout mice. Further inhibition of basolateral NaCl entry via the Na+ -K+ -2Cl- cotransporter in type A intercalated cells reduced Na+ secretion in WT mice to the levels observed in HKA2-/- mice. With no inhibitors, WT mouse CCDs still secreted Na+ and reabsorbed K+ . In vivo, HKA2-/- mice excreted less Na+ than WT mice after switching to a high-salt diet. Taken together, our results indicate that type A intercalated cells secrete Na+ via basolateral Na+ -K+ -2Cl- cotransporters in tandem with apical HKA2 pumps. They also suggest that the CCD can mediate overall Na+ secretion, and that its ability to reabsorb NaCl in vivo depends on the presence of acute regulatory factors.


Subject(s)
Epithelium/metabolism , Kidney Tubules, Collecting/metabolism , Animals , Biological Transport/physiology , Chlorides/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Potassium/metabolism , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
3.
Physiol Rep ; 2(11)2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25413317

ABSTRACT

Large shifts of osmolality occur in the kidney medulla as part of the urine concentrating mechanism. Hyperosmotic stress profoundly challenges cellular homeostasis and induces endoplasmic reticulum (ER) stress. Here, we examined the unfolded protein response (UPR) in hyperosmotically-challenged principal cells of the kidney collecting duct (CD) and show its relevance in controlling epithelial sodium channel (ENaC) abundance, responsible for the final adjustment of Na(+) excretion. Dehydration increases medullary but not cortical osmolality. Q-PCR analysis of microdissected CD of water-deprived mice revealed increased aquaporin-2 (AQP2) expression in outer medullary and cortical CD while ENaC abundance decreased in outer medullary but not cortical CD. Immunoblotting, Q-PCR and immunofluorescence revealed that hyperosmolality induced a transient ER stress-like response both ex vivo and in cultured CD principal cells and increased activity of the canonical UPR mediators PERK and ATF6. Both hyperosmolality and chemical induction of ER stress decreased ENaC expression in vitro. ENaC depletion by either stimulus was abolished by transcriptional inhibition and by the chemical chaperone 4-phenylbutyric acid and was partly abrogated by either PERK or ATF6 silencing. Our data suggest that induction of the UPR by hyperosmolality may help preserve body fluid homeostasis under conditions of dehydration by uncoupling AQP2 and ENaC abundance in outer medullary CD.

4.
Pflugers Arch ; 465(8): 1149-58, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23440459

ABSTRACT

Renal K(+) retention is activated during pregnancy through a mechanism unknown to date. Here, we showed that the renal stimulation of H,K-ATPase type 2 (HKA2), whose expression was recently identified to be progesterone-dependent, is part of the mechanism favoring K(+) accumulation during gestation. Moreover, investigation of the gestational phenotype of HKA2-null mice compared to their wild-type (WT) littermate revealed a decrease in fertility (gestation was successful in 33 % of HKA2-null mice vs. 83 % of WT mice) and in litter size (6.5 ± 0.6 and 7.8 ± 0.4 fetuses per litter, respectively). We also observed that urinary K(+) excretion decreased by 20 % and plasma K(+) concentration rose slightly (11 %) in WT mice during gestation (relative to basal conditions). In contrast, the renal excretion of K(+) and plasma K(+) levels in HKA2-null mice remained constant during gestation, whereas fecal K(+) excretion increased. As a consequence, HKA2-null mice did not accumulate K(+) in their extracellular compartment as efficiently as WT mice did. Finally, the link between inefficient K(+) balance adaptations and gestational complications was established when we observed that these complications could be reversed with an increased K(+) uptake. Altogether, these results define a novel physiological role for the HKA2 transporter and uncover a link between K(+) metabolism and fertility.


Subject(s)
Fertility/physiology , H(+)-K(+)-Exchanging ATPase/metabolism , Homeostasis/physiology , Kidney/metabolism , Animals , Female , Kidney/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Potassium/metabolism , Potassium/urine , Pregnancy , Pregnancy Complications/metabolism , Pregnancy Complications/physiopathology
5.
J Chromatogr A ; 1218(37): 6369-78, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21802688

ABSTRACT

In the field of nuclear waste management, the 6,6'-bis-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]-triazin-3-yl)-[2,2']-bipyridine (CyMe(4)BTBP) is a polycyclic N-based molecule eligible to remove actinides from spent nuclear fuel by liquid-liquid extraction processes. In such processes, the organic phase containing the extracting molecules will undergo hydrolysis and radiolysis, involving degradation products. The purpose of this work was to develop a normal phase chromatography (NP-HPLC) coupled to atmospherical pressure chemical ionisation-mass spectrometry (APCI-MS) method to separate and identify degradation products of CyMe(4)BTBP dissolved in octanol, submitted to HNO(3) hydrolysis. 1 mol L(-1) HNO(3) hydrolysis conditions were used regarding the selective actinides extraction (SANEX) process, while 3 mol L(-1) HNO(3) conditions were applied for the group actinide extraction (GANEX) process. The first step consisted in optimizing the chromatographic separation conditions using a diode array detection (DAD). Retention behavior of a non hydrolyzed mixture of N,N'-dimethyl-N,N'-dioctyl-hexyloxyethyl-malonamide (DMDOHEMA), a malonamide used in the SANEX process to increase the kinetic of extraction, and CyMe(4)BTBP were investigated on diol-, cyano-, and amino-bonded stationary phases using different mobile phase compositions. These latter were hexane with different polar modifiers, i.e. dioxane, isopropanol, ethanol and methylene chloride/methanol. The different retention processes in NP-HPLC were highlighted when using various stationary and mobile phases. The second step was the setting-up of the NP-HPLC-APCI-MS coupling and the use of the low-energy collision dissociation tandem mass spectrometry (CID-MS/MS) of the precursor protonated molecules that allowed the separation and the characterization of the main hydrolytic CyMe(4)BTBP degradation product under a 3 mol L(-1) HNO(3) concentration. Investigation of the CID-MS/MS fragmentation pattern was used to suggest the potential ways leading to this hydrolysis degradation product. This NP-HPLC-APCI-MS method development is described for the first time for the CyMe(4)BTBP and should provide separation methods regarding the analysis of polycyclic N-based extracting molecules and more generally for the investigation of the organic phase coming from liquid-liquid extraction processes used in nuclear fuel reprocessing.


Subject(s)
Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Pyridines/chemistry , Radioactive Waste , Triazines/chemistry , 2,2'-Dipyridyl/chemistry , Alcohols/chemistry
6.
J Bacteriol ; 192(5): 1238-48, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20038586

ABSTRACT

A spontaneous mutant of Rhodobacter sphaeroides f. sp. denitrificans IL-106 was found to excrete a large amount of a red compound identified as coproporphyrin III, an intermediate in bacteriochlorophyll and heme synthesis. The mutant, named PORF, is able to grow under phototrophic conditions but has low levels of intracellular cysteine and glutathione and overexpresses the cysteine synthase CysK. The expression of molybdoenzymes such as dimethyl sulfoxide (DMSO) and nitrate reductases is also affected under certain growth conditions. Excretion of coproporphyrin and overexpression of CysK are not directly related but were both found to be consequences of a diminished synthesis of the key metabolite S-adenosylmethionine (SAM). The wild-type phenotype is restored when the gene metK encoding SAM synthetase is supplied in trans. The metK gene in the mutant strain has a mutation leading to a single amino acid change (H145Y) in the encoded protein. This point mutation is responsible for a 70% decrease in intracellular SAM content which probably affects the activities of numerous SAM-dependent enzymes such as coproporphyrinogen oxidase (HemN); uroporphyrinogen III methyltransferase (CobA), which is involved in siroheme synthesis; and molybdenum cofactor biosynthesis protein A (MoaA). We propose a model showing that the attenuation of the activities of SAM-dependent enzymes in the mutant could be responsible for the coproporphyrin excretion, the low cysteine and glutathione contents, and the decrease in DMSO and nitrate reductase activities.


Subject(s)
Coproporphyrins/metabolism , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Mutation, Missense , Point Mutation , Rhodobacter sphaeroides/enzymology , Rhodobacter sphaeroides/genetics , Sulfhydryl Compounds/metabolism , Amino Acid Sequence , Amino Acid Substitution/genetics , Cysteine/metabolism , DNA Mutational Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genetic Complementation Test , Glutathione/metabolism , Models, Biological , Molecular Sequence Data , Rhodobacter sphaeroides/metabolism , S-Adenosylmethionine/metabolism , Sequence Alignment , Sequence Analysis, DNA
7.
Talanta ; 78(3): 676-81, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19269411

ABSTRACT

Developments carried out in the Laboratory of Isotopic, Nuclear and Elementary Analyses in order to quantify (147)Pm in spent nuclear fuels analyzed at the CEA within the framework of the Burn Up Credit research program for neutronic code validation are presented here. This determination is essential for safety-criticality studies. The quantity and the nature of the radionuclides in irradiated fuel solutions force us to separate the elements of interest before measuring their isotopic content by mass spectrometry. The main objective of this study is to modify the separation protocol used in our laboratory in order to recover and to measure the (147)Pm at the same time as the other lanthanides and actinides determined by mass spectrometry. A very complete study on synthetic solution (containing or not (147)Pm) was undertaken in order to determine the yield of the various stages of separation carried out before obtaining the isolated Pm fraction from the whole of the elements present in the spent fuel solutions. With the lack of natural tracer to carry out the measurement with the isotope dilution technique, the great number of isotopes in fuel, the originality of this work rests on the use of another present lanthanide in fuel to define the output of separation. The yields were measured at the conclusion of each stage of separation with two others lanthanides in order to show that one of them could be used as a tracer to correct the measurement of the (147)Pm with the separation yield. The total yield (at the conclusion of the two stages of separation) was measured at the same time by ICP-MS and liquid scintillation. This last determination made it possible to validate the use of the (147)Sm (natural) to measure the (147)Pm in ICP-MS since the outputs determined in liquid scintillation and ICP-MS (starting from the radioactive decrease of the source having been used to make the synthetic solution) were equivalent. It is the first time that such measurement is performed in ICP-MS. The measurement of the (147)Pm was finally taken on fuels UOx and MOx by using the (153)Eu like a tracer of the separation yield. The results obtained are in very good agreement with those obtained from neutronic calculation code.


Subject(s)
Nuclear Energy , Promethium/analysis , Conservation of Natural Resources , Mass Spectrometry , Promethium/isolation & purification , Scintillation Counting
8.
J Chromatogr A ; 1164(1-2): 139-44, 2007 Sep 14.
Article in English | MEDLINE | ID: mdl-17640658

ABSTRACT

Hydrophilic interaction liquid chromatography (HILIC) is an alternative technique to ion pairing-reversed-phase liquid chromatography (IP-RPLC) and classical RPLC for separation of alkylimidazolium room-temperature ionic liquids (RTILs). Particularly, HILIC offers better retention and selectivity for short-chains RTILs imidazolium compounds. HILIC mechanisms were investigated by studying the influence of organic modifier content and salt concentration in the mobile phase. HILIC method was validated by quantifying 1-butyl-3-methylimidazolium cation (BMIM) degradation under gamma radiation at 2.5MGy. Development of separative reproducible analytical methods, including for low concentration, applicable to RTILs are today mandatory to improve RTILs chemistry.


Subject(s)
Chromatography, Liquid/methods , Ionic Liquids/chemistry , Ionic Liquids/isolation & purification , Reproducibility of Results , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...