Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612635

ABSTRACT

We previously found that feeding rats with broccoli or cauliflower leads to the formation of characteristic DNA adducts in the liver, intestine and various other tissues. We identified the critical substances in the plants as 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate and its degradation product 1-MIM-OH. DNA adduct formation and the mutagenicity of 1-MIM-OH in cell models were drastically enhanced when human sulfotransferase (SULT) 1A1 was expressed. The aim of this study was to clarify the role of SULT1A1 in DNA adduct formation by 1-MIM-OH in mouse tissues in vivo. Furthermore, we compared the endogenous mouse Sult1a1 and transgenic human SULT1A1 in the activation of 1-MIM-OH using genetically modified mouse strains. We orally treated male wild-type (wt) and Sult1a1-knockout (ko) mice, as well as corresponding lines carrying the human SULT1A1-SULT1A2 gene cluster (tg and ko-tg), with 1-MIM-OH. N2-(1-MIM)-dG and N6-(1-MIM)-dA adducts in DNA were analysed using isotope-dilution UPLC-MS/MS. In the liver, caecum and colon adducts were abundant in mice expressing mouse and/or human SULT1A1, but were drastically reduced in ko mice (1.2-10.6% of wt). In the kidney and small intestine, adduct levels were high in mice carrying human SULT1A1-SULT1A2 genes, but low in wt and ko mice (1.8-6.3% of tg-ko). In bone marrow, adduct levels were very low, independently of the SULT1A1 status. In the stomach, they were high in all four lines. Thus, adduct formation was primarily controlled by SULT1A1 in five out of seven tissues studied, with a strong impact of differences in the tissue distribution of mouse and human SULT1A1. The behaviour of 1-MIM-OH in these models (levels and tissue distribution of DNA adducts; impact of SULTs) was similar to that of methyleugenol, classified as "probably carcinogenic to humans". Thus, there is a need to test 1-MIM-OH for carcinogenicity in animal models and to study its adduct formation in humans consuming brassicaceous foodstuff.


Subject(s)
DNA Adducts , Glucosinolates , Mice , Humans , Animals , Rats , Mice, Knockout , Chromatography, Liquid , Tandem Mass Spectrometry , Arylsulfotransferase/genetics
2.
Arch Toxicol ; 98(6): 1573-1580, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573336

ABSTRACT

Dietary exposure to N-nitrosamines has recently been assessed by the European Food Safety Authority (EFSA) to result in margins of exposure that are conceived to indicate concern with respect to human health risk. However, evidence from more than half a century of international research shows that N-nitroso compounds (NOC) can also be formed endogenously. In this commentary of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG), the complex metabolic and physiological biokinetics network of nitrate, nitrite and reactive nitrogen species is discussed with emphasis on its influence on endogenous NOC formation. Pioneering approaches to monitor endogenous NOC have been based on steady-state levels of N-nitrosodimethylamine (NDMA) in human blood and on DNA adduct levels in blood cells. Further NOC have not been considered yet to a comparable extent, although their generation from endogenous or exogenous precursors is to be expected. The evidence available to date indicates that endogenous NDMA exposure could exceed dietary exposure by about 2-3 orders of magnitude. These findings require consolidation by refined toxicokinetics and DNA adduct monitoring data to achieve a credible and comprehensive human health risk assessment.


Subject(s)
DNA Adducts , Dietary Exposure , Dimethylnitrosamine , Nitrosamines , Humans , Risk Assessment , Nitrosamines/toxicity , Nitrosamines/pharmacokinetics , Dietary Exposure/adverse effects , Dimethylnitrosamine/toxicity , Food Contamination , Food Safety , Animals , Nitrites/toxicity , Nitrates/toxicity , Nitrates/pharmacokinetics , Reactive Nitrogen Species/metabolism
3.
Mol Nutr Food Res ; 67(23): e2200661, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37840378

ABSTRACT

The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) has reviewed the currently available data in order to assess the health risks associated with the use of acetaldehyde as a flavoring substance in foods. Acetaldehyde is genotoxic in vitro. Following oral intake of ethanol or inhalation exposure to acetaldehyde, systemic genotoxic effects of acetaldehyde in vivo cannot be ruled out (induction of DNA adducts and micronuclei). At present, the key question of whether acetaldehyde is genotoxic and mutagenic in vivo after oral exposure cannot be answered conclusively. There is also insufficient data on human exposure. Consequently, it is currently not possible to reliably assess the health risk associated with the use of acetaldehyde as a flavoring substance. However, considering the genotoxic potential of acetaldehyde as well as numerous data gaps that need to be filled to allow a comprehensive risk assessment, the SKLM considers that the use of acetaldehyde as a flavoring may pose a safety concern. For reasons of precautionary consumer protection, the SKLM recommends that the scientific base for approval of the intentional addition of acetaldehyde to foods as a flavoring substance should be reassessed.


Subject(s)
Acetaldehyde , Food Additives , Humans , Acetaldehyde/toxicity , Risk Assessment , Food
4.
Chem Res Toxicol ; 36(11): 1753-1767, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37875262

ABSTRACT

Methyleugenol (ME), found in numerous plants and spices, is a rodent carcinogen and is classified as "possibly carcinogenic to humans". The hypothesis of a carcinogenic risk for humans is supported by the observation of ME-derived DNA adducts in almost all human liver and lung samples examined. Therefore, a risk assessment of ME is needed. Unfortunately, biomarkers of exposure for epidemiological studies are not yet available. We hereby present the first detection of N-acetyl-l-cysteine conjugates (mercapturic acids) of ME in human urine samples after consumption of a popular ME-containing meal, pasta with basil pesto. We synthesized mercapturic acid conjugates of ME, identified the major product as N-acetyl-S-[3'-(3,4-dimethoxyphenyl)allyl]-l-cysteine (E-3'-MEMA), and developed methods for its extraction and LC-MS/MS quantification in human urine. For conducting an exposure study in humans, a basil cultivar with a suitable ME content was grown for the preparation of basil pesto. A defined meal containing 100 g of basil pesto, corresponding to 1.7 mg ME, was served to 12 participants, who collected the complete urine at defined time intervals for 48 h. Using d6-E-3'-MEMA as an internal standard for LC-MS/MS quantification, we were able to detect E-3'-MEMA in urine samples of all participants collected after the ME-containing meal. Excretion was maximal between 2 and 6 h after the meal and was completed within about 12 h (concentrations below the limit of detection). Excreted amounts were only between 1 and 85 ppm of the ME intake, indicating that the ultimate genotoxicant, 1'-sulfooxy-ME, is formed to a subordinate extent or is not efficiently detoxified by glutathione conjugation and subsequent conversion to mercapturic acids. Both explanations may apply cumulatively, with the ubiquitous detection of ME DNA adducts in human lung and liver specimens arguing against an extremely low formation of 1'-sulfooxy-ME. Taken together, we hereby present the first noninvasive human biomarker reflecting an internal exposure toward reactive ME species.


Subject(s)
Acetylcysteine , Ocimum basilicum , Animals , Humans , Acetylcysteine/urine , Carcinogens , Rodentia , Chromatography, Liquid , DNA Adducts , Tandem Mass Spectrometry
5.
Arch Toxicol ; 97(11): 3005-3017, 2023 11.
Article in English | MEDLINE | ID: mdl-37615677

ABSTRACT

Exposure to multiple substances is a challenge for risk evaluation. Currently, there is an ongoing debate if generic "mixture assessment/allocation factors" (MAF) should be introduced to increase public health protection. Here, we explore concepts of mixture toxicity and the potential influence of mixture regulation concepts for human health protection. Based on this analysis, we provide recommendations for research and risk assessment. One of the concepts of mixture toxicity is additivity. Substances may act additively by affecting the same molecular mechanism within a common target cell, for example, dioxin-like substances. In a second concept, an "enhancer substance" may act by increasing the target site concentration and aggravating the adverse effect of a "driver substance". For both concepts, adequate risk management of individual substances can reliably prevent adverse effects to humans. Furthermore, we discuss the hypothesis that the large number of substances to which humans are exposed at very low and individually safe doses may interact to cause adverse effects. This commentary identifies knowledge gaps, such as the lack of a comprehensive overview of substances regulated under different silos, including food, environmentally and occupationally relevant substances, the absence of reliable human exposure data and the missing accessibility of ratios of current human exposure to threshold values, which are considered safe for individual substances. Moreover, a comprehensive overview of the molecular mechanisms and most susceptible target cells is required. We conclude that, currently, there is no scientific evidence supporting the need for a generic MAF. Rather, we recommend taking more specific measures, which focus on compounds with relatively small ratios between human exposure and doses, at which adverse effects can be expected.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Polychlorinated Dibenzodioxins , Humans , Food , Public Health , Risk Assessment
6.
Front Physiol ; 14: 1125969, 2023.
Article in English | MEDLINE | ID: mdl-37113693

ABSTRACT

Background: An elevated core temperature (Tcore) increases the risk of performance impairments and heat-related illness. Internal cooling (IC) has the potential to lower Tcore when exercising in the heat. The aim of the review was to systematically analyze the effects of IC on performance, physiological, and perceptional parameters. Methods: A systematic literature search was performed in the PubMed database on 17 December 2021. Intervention studies were included assessing the effects of IC on performance, physiological, or perceptional outcomes. Data extraction and quality assessment were conducted for the included literature. The standardized mean differences (SMD) and 95% Confidence Intervals (CI) were calculated using the inverse-variance method and a random-effects model. Results: 47 intervention studies involving 486 active subjects (13.7% female; mean age 20-42 years) were included in the meta-analysis. IC resulted in significant positive effects on time to exhaustion [SMD (95% CI) 0.40 (0.13; 0.67), p < 0.01]. IC significantly reduced Tcore [-0.19 (22120.34; -0.05), p < 0.05], sweat rate [-0.20 (-0.34; -0.06), p < 0.01], thermal sensation [-0.17 (-0.33; -0.01), p < 0.05], whereas no effects were found on skin temperature, blood lactate, and thermal comfort (p > 0.05). IC resulted in a borderline significant reduction in time trial performance [0.31 (-0.60; -0.02), p = 0.06], heart rate [-0.13 (-0.27; 0.01), p = 0.06], rate of perceived exertion [-0.16 (-0.31; -0.00), p = 0.05] and borderline increased mean power output [0.22 (0.00; 0.44), p = 0.05]. Discussion: IC has the potential to affect endurance performance and selected physiological and perceptional parameters positively. However, its effectiveness depends on the method used and the time point of administration. Future research should confirm the laboratory-based results in the field setting and involve non-endurance activities and female athletes. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022336623.

7.
Food Chem Toxicol ; 173: 113632, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36708862

ABSTRACT

This opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) presents arguments for an updated risk assessment of diet-related exposure to acrylamide (AA), based on a critical review of scientific evidence relevant to low dose exposure. The SKLM arrives at the conclusion that as long as an appropriate exposure limit for AA is not exceeded, genotoxic effects resulting in carcinogenicity are unlikely to occur. Based on the totality of the evidence, the SKLM considers it scientifically justified to derive a tolerable daily intake (TDI) as a health-based guidance value.


Subject(s)
Acrylamide , Food Safety , No-Observed-Adverse-Effect Level , Acrylamide/toxicity , Risk Assessment
8.
Arch Toxicol ; 96(6): 1905-1914, 2022 06.
Article in English | MEDLINE | ID: mdl-35504979

ABSTRACT

Subsequent to the dietary uptake of nitrate/nitrite in combination with acetaldehyde/ethanol, combination effects resulting from the sustained endogenous exposure to nitrite and acetaldehyde may be expected. This may imply locoregional effects in the upper gastrointestinal tract as well as systemic effects, such as a potential influence on endogenous formation of N-nitroso compounds (NOC). Salivary concentrations of the individual components nitrate and nitrite and acetaldehyde are known to rise after ingestion, absorption and systemic distribution, thereby reflecting their respective plasma kinetics and parallel secretion through the salivary glands as well as the microbial/enzymatic metabolism in the oral cavity. Salivary excretion may also occur with certain drug molecules and food constituents and their metabolites. Therefore, putative combination effects in the oral cavity and the upper digestive tract may occur, but this has remained largely unexplored up to now. In this Guest Editorial, published evidence on exposure levels and biokinetics of nitrate/nitrite/NOx, NOC and acetaldehyde in the organism is reviewed and knowledge gaps concerning combination effects are identified. Research is suggested to be initiated to study the related unresolved issues.


Subject(s)
Nitrites , Upper Gastrointestinal Tract , Acetaldehyde/metabolism , Humans , Nitrates/metabolism , Nitrites/metabolism , Nitroso Compounds/metabolism , Saliva/metabolism , Upper Gastrointestinal Tract/metabolism
9.
Part Fibre Toxicol ; 19(1): 37, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35578293

ABSTRACT

BACKGROUND: TiO2 nanomaterials (NMs) are present in a variety of food and personal hygiene products, and consumers are exposed daily to these NMs through oral exposition. While the bulk of ingested TiO2 NMs are eliminated rapidly in stool, a fraction is able to cross the intestinal epithelial barrier and enter systemic circulation from where NMs can be distributed to tissues, primarily liver and spleen. Daily exposure to TiO2 NMs, in combination with a slow rate of elimination from tissues, results in their accumulation within different tissues. Considerable evidence suggests that following oral exposure to TiO2 NMs, the presence of NMs in tissues is associated with a number of adverse effects, both in intestine and liver. Although numerous studies have been performed in vitro investigating the acute effects of TiO2 NMs in intestinal and hepatic cell models, considerably less is known about the effect of repeated exposure on these models. In this study, we investigated the cytotoxic effects of repeated exposure of relevant models of intestine and liver to two TiO2 NMs differing in hydrophobicity for 24 h, 1 week and 2 weeks at concentrations ranging from 0.3 to 80 µg/cm2. To study the persistence of these two NMs in cells, we included a 1-week recovery period following 24 h and 1-week treatments. Cellular uptake by TEM and ToF-SIMS analyses, as well as the viability and pro-inflammatory response were evaluated. Changes in the membrane composition in Caco-2 and HepaRG cells treated with TiO2 NMs for up to 2 weeks were also studied. RESULTS: Despite the uptake of NM-103 and NM-104 in cells, no significant cytotoxic effects were observed in either Caco-2 or HepaRG cells treated for up to 2 weeks at NM concentrations up to 80 µg/cm2. In addition, no significant effects on IL-8 secretion were observed. However, significant changes in membrane composition were observed in both cell lines. Interestingly, while most of these phospholipid modifications were reversed following a 1-week recovery, others were not affected by the recovery period. CONCLUSION: These findings indicate that although no clear effects on cytotoxicity were observed following repeated exposure of differentiated Caco-2 and HepaRG cells to TiO2 NMs, subtle effects on membrane composition could induce potential adverse effects in the long-term.


Subject(s)
Nanostructures , Titanium , Caco-2 Cells , Hepatocytes , Humans , Intestines , Liver , Nanostructures/toxicity , Titanium/toxicity
10.
Toxicol In Vitro ; 78: 105257, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34688838

ABSTRACT

Exposure of consumers to aluminum-containing nanomaterials (Al NMs) is an area of concern for public health agencies. As the available data on the genotoxicity of Al2O3 and Al0 NMs are inconclusive or rare, the present study investigated their in vitro genotoxic potential in intestinal and liver cell models, and compared with the ionic form AlCl3. Intestinal Caco-2 and hepatic HepaRG cells were exposed to Al0 and Al2O3 NMs (0.03 to 80 µg/cm2). Cytotoxicity, oxidative stress and apoptosis were measured using High Content Analysis. Genotoxicity was investigated through γH2AX labelling, the alkaline comet and micronucleus assays. Moreover, oxidative DNA damage and carcinogenic properties were assessed using the Fpg-modified comet assay and the cell transforming assay in Bhas 42 cells respectively. The three forms of Al did not induce chromosomal damage. However, although no production of oxidative stress was detected, Al2O3 NMs induced oxidative DNA damage in Caco-2 cells but not likely related to ion release in the cell media. Considerable DNA damage was observed with Al0 NMs in both cell lines in the comet assay, likely due to interference with these NMs. No genotoxic effects were observed with AlCl3. None of the Al compounds induced cytotoxicity, apoptosis, γH2AX or cell transformation.


Subject(s)
Aluminum/toxicity , DNA Damage , Metal Nanoparticles/toxicity , Aluminum Chloride/toxicity , Aluminum Oxide/toxicity , Caco-2 Cells , Cell Line , Comet Assay , Hepatocytes/drug effects , Humans , Intestines/drug effects , Micronucleus Tests , Oxidative Stress
11.
Arch Toxicol ; 96(1): 211-229, 2022 01.
Article in English | MEDLINE | ID: mdl-34778935

ABSTRACT

Within the EuroMix project, we have previously developed an adverse outcome pathway (AOP)-based in vitro assay toolbox to investigate the combined effects of liver steatosis-inducing compounds in human HepaRG hepatocarcinoma cells. In this study, we applied the toolbox to further investigate mixture effects of combinations, featuring either similarly acting or dissimilarly acting substances. The valproic acid structural analogs 2-propylheptanoic acid (PHP) and 2-propylhexanoic acid (PHX) were chosen for establishing mixtures of similarly acting substances, while a combination with the pesticidal active substance clothianidin (CTD) was chosen for establishing mixtures of dissimilarly acting compounds. We first determined relative potency factors (RPFs) for each compound based on triglyceride accumulation results. Thereafter, equipotent mixtures were tested for nuclear receptor activation in transfected HepG2 cells, while gene expression and triglyceride accumulation were investigated in HepaRG cells, following the proposed AOP for liver steatosis. Dose addition was observed for all combinations and endpoints tested, indicating the validity of the additivity assumption also in the case of the tested mixtures of dissimilarly acting substances. Gene expression results indicate that the existing steatosis AOP can still be refined with respect to the early key event (KE) of gene expression, in order to reflect the diversity of molecular mechanisms underlying the adverse outcome.


Subject(s)
Adverse Outcome Pathways , Carcinoma, Hepatocellular , Fatty Liver , Liver Neoplasms , Fatty Liver/chemically induced , Fatty Liver/metabolism , Hep G2 Cells , Humans
12.
Foods ; 10(9)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34574230

ABSTRACT

Piperine is a natural ingredient of Piper nigrum (black pepper) and some other Piper species. Compared to the use of pepper for food seasoning, piperine is used in food supplements in an isolated, concentrated form and ingested as a bolus. The present review focuses on the assessment of the possible critical health effects regarding the use of isolated piperine as a single ingredient in food supplements. In human and animal studies with single or short-term bolus application of isolated piperine, interactions with several drugs, in most cases resulting in increased drug bioavailability, were observed. Depending on the drug and extent of the interaction, such interactions may carry the risk of unintended deleteriously increased or adverse drug effects. Animal studies with higher daily piperine bolus doses than in human interaction studies provide indications of disturbance of spermatogenesis and of maternal reproductive and embryotoxic effects. Although the available human studies rarely reported effects that were regarded as being adverse, their suitability for detailed risk assessment is limited due to an insufficient focus on safety parameters apart from drug interactions, as well as due to the lack of investigation of the potentially adverse effects observed in animal studies and/or combined administration of piperine with other substances. Taken together, it appears advisable to consider the potential health risks related to intake of isolated piperine in bolus form, e.g., when using certain food supplements.

13.
Arch Toxicol ; 95(7): 2571-2587, 2021 07.
Article in English | MEDLINE | ID: mdl-34095968

ABSTRACT

Since the addition of fluoride to drinking water in the 1940s, there have been frequent and sometimes heated discussions regarding its benefits and risks. In a recently published review, we addressed the question if current exposure levels in Europe represent a risk to human health. This review was discussed in an editorial asking why we did not calculate benchmark doses (BMD) of fluoride neurotoxicity for humans. Here, we address the question, why it is problematic to calculate BMDs based on the currently available data. Briefly, the conclusions of the available studies are not homogeneous, reporting negative as well as positive results; moreover, the positive studies lack control of confounding factors such as the influence of well-known neurotoxicants. We also discuss the limitations of several further epidemiological studies that did not meet the inclusion criteria of our review. Finally, it is important to not only focus on epidemiological studies. Rather, risk analysis should consider all available data, including epidemiological, animal, as well as in vitro studies. Despite remaining uncertainties, the totality of evidence does not support the notion that fluoride should be considered a human developmental neurotoxicant at current exposure levels in European countries.


Subject(s)
Drinking Water , Fluorides , Animals , Epidemiologic Studies , Europe , Fluorides/toxicity , Longitudinal Studies
14.
Arch Toxicol ; 95(3): 1039-1053, 2021 03.
Article in English | MEDLINE | ID: mdl-33426623

ABSTRACT

Co-occurrence of pesticide residues in food commodities raises a potential safety issue as their mixture effects on human health are largely unknown. In a previous study, we reported the toxicological effects (pathology and histopathology) of imazalil (IMZ), thiacloprid (THI), and clothianidin (CTD) alone and in binary mixtures in a 28-day oral gavage study in female Wistar rats. Five dose levels (up to 350 mg/kg body weight/day) ranging from a typical toxicological reference value to a clear effect dose were applied. In the present study, we undertook a transcriptomics analysis of rat livers by means of total RNA sequencing (RNA-Seq). Bioinformatic data analysis involving Ingenuity Pathway Analysis (IPA) was used to gain mechanistic information on hepatotoxicity-related pathways affected after treatment with the pesticides, alone and in mixtures. Our data show that 2986 genes were differentially regulated by CTD while IMZ and THI had effects on 194 and 225 genes, respectively. All three individual compounds shared a common subset of genes whose network is associated with xenobiotic metabolism and nuclear receptor activation. Similar networks were retrieved for the mixtures. Alterations in the expression of individual genes were in line with the assumption of dose addition. Our results bring new insight into the hepatotoxicity mechanisms of IMZ, THI, and CTD and their mixtures.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Guanidines/toxicity , Imidazoles/toxicity , Neonicotinoids/toxicity , Thiazines/toxicity , Thiazoles/toxicity , Animals , Chemical and Drug Induced Liver Injury/genetics , Dose-Response Relationship, Drug , Female , Gene Expression Profiling , Guanidines/administration & dosage , Imidazoles/administration & dosage , Neonicotinoids/administration & dosage , Pesticides/toxicity , Rats , Rats, Wistar , Sequence Analysis, RNA , Thiazines/administration & dosage , Thiazoles/administration & dosage
15.
Food Chem Toxicol ; 147: 111884, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33249052

ABSTRACT

Carcinogenic benzo[a]pyrene (BP) and other non-carcinogenic polycyclic aromatic hydrocarbons (PAH) like fluoranthene (FA) and pyrene (PYR) occur as food contaminants. Molecular effects of BP, FA and PYR in human liver cells were investigated using mixtures occurring in grilled meat. Activation of aryl hydrocarbon receptor (AHR) and constitutive androstane receptor (CAR) was investigated along with target gene expression. Mixture effects on BP metabolite profile and DNA-damaging potential were studied as biological downstream effects. Compared to BP, FA and PYR activated the AHR only weakly. Mixtures were less efficient than BP. Analysis of CYP1A1 expression showed synergistic induction after co-exposure in HepaRG cells. FA and PYR were strong CAR agonists, whereas BP was less potent. Mixtures containing BP caused a strong decrease of CAR transactivation in line with lower CYP2B6 expression. The BP metabolite profile and BP-induced DNA damage were only weakly affected. PAH mixtures modulate AHR, CAR activation and their target genes. However, these mixture effects appear not to be reflected at the level of downstream events like BP metabolite formation or BP-induced DNA damage. Our study clearly shows that endpoints at all biological levels should be considered for mixture evaluation, instead of drawing conclusions exclusively based on early molecular events.


Subject(s)
Benzo(a)pyrene/metabolism , DNA Damage/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Carcinoma, Hepatocellular , Cytochrome P-450 CYP2B6/genetics , Cytochrome P-450 CYP2B6/metabolism , Food Contamination , Humans , Liver Neoplasms , Receptors, Aryl Hydrocarbon/genetics
16.
Dtsch Arztebl Int ; 117(35-36): 575-582, 2020 08 31.
Article in English | MEDLINE | ID: mdl-33161940

ABSTRACT

BACKGROUND: In Germany, public interest in a vegan diet is steadily growing. There are, however, no current data on the macro- and micronutrient status of vegans. METHODS: In a cross-sectional study entitled "The Risks and Benefits of a Vegan Diet" (RBVD), we investigated the dietary intake, basic laboratory parameters, vitamin status, and trace-element status of 36 vegans and 36 persons on an omnivorous diet. Each group consisted of 18 men and 18 women aged 30-60. RESULTS: Nearly all the vegans and one-third of the persons on a mixed diet had consumed supplements in the previous 4 weeks. Vegans and nonvegans had similar energy intake but differed in the intake of both macronutrients (e.g., dietary fiber) and micronutrients (e.g., vitamins B12, B2, D, E, and K, as well as folate, iodine, and iron). There were no intergroup differences in the biomarkers of vitamin B12, vitamin D, or iron status. The ferritin values and blood counts indicated iron deficiency in four vegans and three non-vegans. Measurements in 24-hour urine samples revealed lower calcium excretion and markedly lower iodine excretion in vegans compared to non-vegans; in one-third of the vegans, iodine excretion was lower than the WHO threshold value (<20 µg/L) for severe iodine deficiency. CONCLUSION: Vitamin B12 status was similarly good in vegans and non-vegans, even though the vegans consumed very little dietary B12. This may be due to the high rate of supplementation. The findings imply a need to also assure adequate iodine intake in the population, especially among persons on a vegan diet.


Subject(s)
Diet, Vegan , Vitamins , Adult , Cross-Sectional Studies , Diet, Vegetarian , Female , Germany/epidemiology , Humans , Male , Middle Aged , Minerals
17.
Food Chem Toxicol ; 146: 111784, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32998026

ABSTRACT

It was generally accepted as a default assumption that No-Observed-Adverse-Effect Levels (NOAELs) or Lowest-Observed-Adverse-Effect Levels (LOAELs) in long-term toxicity studies are lower than in short-term ones, i.e. the toxic potency increases with prolonged exposure duration. Recent studies on pesticides and industrial chemicals reported that subacute, subchronic or chronic NOAELs/LOAELs are similar when study design factors are appropriately considered. We investigated whether these findings also apply to certain food constituents. After reviewing subchronic and chronic toxicity studies on more than 100 compounds, a total of 32 compounds could be included in the analysis. Geometric mean (GM) values of subchronic vs. chronic NOAEL or LOAEL ratios ranged from 1.0 to 2.0, with a geometric standard deviation from 2.2 to 4.2, which is consistent with data reported in the literature. While for many of the investigated compounds the ratio is around 1 - suggesting that health-based guidance values could appropriately be derived from subchronic toxicity studies - our study also identified some substances with higher ratios leading to a GM of around 2. The EFSA Scientific Committee suggested to apply an uncertainty factor of 2 to extrapolate from subchronic to chronic studies and, as a precautionary approach, we concur with this suggestion.


Subject(s)
Food Additives/toxicity , Food Contamination , Animals , Humans , Mice , No-Observed-Adverse-Effect Level , Toxicity Tests, Chronic , Toxicity Tests, Subchronic
18.
Arch Toxicol ; 94(9): 3347, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32696078

ABSTRACT

The author would like to thank N. Bakhiya, S. Hessel-Pras, B. Sachse, and B. Dusemund for their support in the chapter about pyrrolizidine alkaloids.

19.
Arch Toxicol ; 94(6): 1787-1877, 2020 06.
Article in English | MEDLINE | ID: mdl-32542409

ABSTRACT

The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.


Subject(s)
Carcinogens/toxicity , DNA Damage , Mutagens/toxicity , Animals , Carcinogenicity Tests , Humans , Mutagenicity Tests , Risk Assessment , Toxicogenetics
20.
Arch Toxicol ; 94(5): 1739-1751, 2020 05.
Article in English | MEDLINE | ID: mdl-32419051

ABSTRACT

Pyrrolizidine alkaloids (PA) are secondary plant metabolites that occur as food and feed contaminants. Acute and subacute PA poisoning can lead to severe liver damage in humans and animals, comprising liver pain, hepatomegaly and the development of ascites due to occlusion of the hepatic sinusoids (veno-occlusive disease). Chronic exposure to low levels of PA can induce liver cirrhosis and liver cancer. However, it is not well understood which transcriptional changes are induced by PA and whether all hepatotoxic PA, regardless of their structure, induce similar responses. Therefore, a 28-day subacute rat feeding study was performed with six structurally different PA heliotrine, echimidine, lasiocarpine, senecionine, senkirkine, and platyphylline, administered at not acutely toxic doses from 0.1 to 3.3 mg/kg body weight. This dose range is relevant for humans, since consumption of contaminated tea may result in doses of ~ 8 µg/kg in adults and cases of PA ingestion by contaminated food was reported for infants with doses up to 3 mg/kg body weight. ALT and AST were not increased in all treatment groups. Whole-genome microarray analyses revealed pronounced effects on gene expression in the high-dose treatment groups resulting in a set of 36 commonly regulated genes. However, platyphylline, the only 1,2-saturated and, therefore, presumably non-hepatotoxic PA, did not induce significant expression changes. Biological functions identified to be affected by high-dose treatments (3.3 mg/kg body weight) comprise cell-cycle regulation associated with DNA damage response. These functions were found to be affected by all analyzed 1,2-unsaturated PA.In conclusion, 1,2-unsaturated hepatotoxic PA induced cell cycle regulation processes associated with DNA damage response. Similar effects were observed for all hepatotoxic PA. Effects were observed in a dose range inducing no histopathological alterations and no increase in liver enzymes. Therefore, transcriptomics studies identified changes in expression of genes known to be involved in response to genotoxic compounds at PA doses relevant to humans under worst case exposure scenarios.


Subject(s)
Pyrrolizidine Alkaloids/toxicity , Animals , DNA Damage , Gene Expression , Humans , Liver , Liver Neoplasms , Plants , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...