Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 2327, 2023 04 22.
Article in English | MEDLINE | ID: mdl-37087495

ABSTRACT

Immunomodulatory Siglecs are controlled by their glycoprotein and glycolipid ligands. Siglec-glycolipid interactions are often studied outside the context of a lipid bilayer, missing the complex behaviors of glycolipids in a membrane. Through optimizing a liposomal formulation to dissect Siglec-glycolipid interactions, it is shown that Siglec-6 can recognize glycolipids independent of its canonical binding pocket, suggesting that Siglec-6 possesses a secondary binding pocket tailored for recognizing glycolipids in a bilayer. A panel of synthetic neoglycolipids is used to probe the specificity of this glycolipid binding pocket on Siglec-6, leading to the development of a neoglycolipid with higher avidity for Siglec-6 compared to natural glycolipids. This neoglycolipid facilitates the delivery of liposomes to Siglec-6 on human mast cells, memory B-cells and placental syncytiotrophoblasts. A physiological relevance for glycolipid recognition by Siglec-6 is revealed for the binding and internalization of extracellular vesicles. These results demonstrate a unique and physiologically relevant ability of Siglec-6 to recognize glycolipids in a membrane.


Subject(s)
Extracellular Vesicles , Sialic Acid Binding Immunoglobulin-like Lectins , Female , Humans , Pregnancy , Extracellular Vesicles/metabolism , Glycolipids/chemistry , Glycolipids/metabolism , Liposomes , Mast Cells/metabolism , Memory B Cells/metabolism , Placenta/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
2.
Front Immunol ; 12: 744184, 2021.
Article in English | MEDLINE | ID: mdl-34659241

ABSTRACT

Fusobacterium nucleatum is involved in the development of colorectal cancer (CRC) through innate immune cell modulation. However, the receptors of the interaction between F. nucleatum ssp. and immune cells remain largely undetermined. Here, we showed that F. nucleatum ssp. animalis interacts with Siglecs (sialic acid-binding immunoglobulin-like lectins) expressed on innate immune cells with highest binding to Siglec-7. Binding to Siglec-7 was also observed using F. nucleatum-derived outer membrane vesicles (OMVs) and lipopolysaccharide (LPS). F. nucleatum and its derived OMVs or LPS induced a pro-inflammatory profile in human monocyte-derived dendritic cells (moDCs) and a tumour associated profile in human monocyte-derived macrophages (moMϕs). Siglec-7 silencing in moDCs or CRISPR-cas9 Siglec-7-depletion of U-937 macrophage cells altered F. nucleatum induced cytokine but not marker expression. The molecular interaction between Siglec-7 and the LPS O-antigen purified from F. nucleatum ssp. animalis was further characterised by saturation transfer difference (STD) NMR spectroscopy, revealing novel ligands for Siglec-7. Together, these data support a new role for Siglec-7 in mediating immune modulation by F. nucleatum strains and their OMVs through recognition of LPS on the bacterial cell surface. This opens a new dimension in our understanding of how F. nucleatum promotes CRC progression through the generation of a pro-inflammatory environment and provides a molecular lead for the development of novel cancer therapeutic approaches targeting F. nucleatum-Siglec-7 interaction.


Subject(s)
Antigens, Differentiation, Myelomonocytic/immunology , Colorectal Neoplasms/immunology , Dendritic Cells/immunology , Fusobacterium/immunology , Lectins/immunology , Macrophages/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Carcinogenesis/immunology , Carcinogenesis/metabolism , Cell Line , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Dendritic Cells/metabolism , Fusobacterium/metabolism , Humans , Immunomodulation/immunology , Lectins/metabolism , Macrophages/metabolism
3.
Chembiochem ; 22(7): 1252-1260, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33197108

ABSTRACT

Fusobacterium nucleatum is a common member of the oral microbiota. However, this symbiont has been found to play an active role in disease development. As a Gram-negative bacterium, F. nucleatum has a protective outer membrane layer whose external leaflet is mainly composed of lipopolysaccharides (LPSs). LPSs play a crucial role in the interaction between bacteria and the host immune system. Here, we characterised the structure of the O-antigen and lipid A from F. nucleatum ssp. animalis ATCC 51191 by using a combination of GC-MS, MALDI and NMR techniques. The results revealed a novel repeat of the O-antigen structure of the LPS, [→4)-ß-d-GlcpNAcA-(1→4)-ß-d-GlcpNAc3NAlaA-(1→3)-α-d-FucpNAc4NR-(1→], (R=acetylated 60 %), and a bis-phosphorylated hexa-acylated lipid A moiety. Taken together these data showed that F. nucleatum ATCC 51191 has a distinct LPS which might differentially influence recognition by immune cells.


Subject(s)
Fusobacterium nucleatum/metabolism , Lipid A/chemistry , Lipopolysaccharides/metabolism , O Antigens/chemistry , Carbohydrate Sequence , Gas Chromatography-Mass Spectrometry , Lipopolysaccharides/chemistry , Lipopolysaccharides/isolation & purification , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
4.
Front Immunol ; 8: 1397, 2017.
Article in English | MEDLINE | ID: mdl-29118762

ABSTRACT

The human fungal microbiota known as mycobiota is increasingly recognized as a critical factor in human gut health and disease. Non-pathogenic commensal yeasts such as Saccharomyces cerevisiae promote homeostasis in the gut, whereas dysbiosis of the gut mycobiota is associated with inflammation. Glycan-binding receptors (lectins) are key host factors in host-mycobiota interaction in the gut. They are expressed on immune cells such as dendritic cells (DCs) and recognize fungal polysaccharides. This interaction is imperative to mount appropriate immune responses for immune homeostasis in the gut as well as clearance of fungal pathogens. Recent studies demonstrate that microtubule-associated protein light-chain 3 (LC3)-associated phagocytosis (LAP) is involved in lectin-fungi interactions. Yet, the biological impact of LAP on the lectin function remains largely elusive. In this report, we demonstrate that in mouse LAP is linked to dendritic cell-associated lectin 2 (Dectin-2), a C-type lectin specific to fungal α-mannan polysaccharide. We found that mouse Dectin-2 recognizes commensal yeast S. cerevisiae and Kazachstania unispora. Mouse bone marrow-derived DCs (BMDCs) produced inflammatory cytokines TNFα and IL-1ß in response to the yeasts in a Dectin-2 and spleen tyrosine kinase (Syk)-dependent manner. We found that S. cerevisiae and K. unispora induced LAP in mouse BMDCs upon internalization. Furthermore, LC3 was activated by stimulation of BMDCs with the yeasts in a Dectin-2 and Syk-dependent manner. To address the biological impact of LAP on Dectin-2 yeast interaction, we established a knock-in mouse strain (Atg16L1E230, thereafter called E230), which BMDCs exhibit autophagy-active and LAP-negative phenotypes. When stimulated with yeasts, E230 BMDCs produced significantly less amounts of TNFα and IL-1ß. Taken together, we revealed a novel link between Dectin-2 and LAP that enables host immune cells to respond to mycobiota.

5.
J Med Food ; 20(9): 923-931, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28737454

ABSTRACT

The hypothesis that incorporation of epigallocatechin gallate (EGCG) into nanoemulsions may increase its bioactivity compared with EGCG aqueous solutions was examined in mice. After an in vitro study in a model system with stimulated gastrointestinal conditions, the following EGCG nanoemulsions were used in a mice experiment: Emulsion I: emulsion water in oil (W/O), which contained 0.23 mg/mL EGCG in aqueous phase; Emulsion II: emulsion oil in water (O/W), which contained 10% olive oil and 0.23 mg/mL esterified EGCG in fatty phase; and Emulsion III: emulsion O/W in water (W1/O/W2; 8:32:60), which contained 32% olive oil and 0.23 mg/mL EGCG in aqueous phase. After 2 h of mice administration by gavage with 0.1 mL of EGCG nanoemulsions, total antioxidant capacity (TAC) of plasma and some tissues (especially colon, jejunum, heart, spleen) was measured with Ferric-Reducing Antioxidant Power (FRAP) and Oxygen Radical Absorbance Capacity (ORAC) assays. No toxic effects were observed after administration of 0.23 mg/mL esterified EGCG in CD1 mouse strain. The study concluded that administration of mice with the three EGCG nanoemulsions did not increase their TAC in specific tissues, compared with an aqueous EGCG solution at the same concentration. Nevertheless, the esterified EGCG emulsion (Emulsion II) exerted an increase in mice plasma compared with aqueous EGCG and showed higher values of TAC in several tissues, compared with Emulsions I and III. EGCG nanoemulsions could be considered a useful method in plethora functional food applications, but further research is required for safer results.


Subject(s)
Catechin/analogs & derivatives , Drug Delivery Systems/methods , Animals , Antioxidants/administration & dosage , Antioxidants/chemistry , Catechin/administration & dosage , Catechin/chemistry , Emulsions/administration & dosage , Emulsions/chemistry , Female , Male , Mice , Mice, Inbred C57BL , Nanostructures/chemistry , Olive Oil/chemistry
6.
J Biol Chem ; 291(34): 17629-38, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27358401

ABSTRACT

LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-ß1,3]GalNAc-α1,3-GalNAc-ß1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2.


Subject(s)
Gram-Negative Bacteria/immunology , Lectins, C-Type/immunology , Myeloid Cells/immunology , O Antigens/immunology , Animals , HEK293 Cells , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Lectins, C-Type/genetics , Male , Mice , Mice, Knockout , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...