Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943483

ABSTRACT

The diversity in alternative splicing of long noncoding RNAs (lncRNAs) poses a challenge for functional annotation of lncRNAs. Moreover, little is known on the effects of alternatively spliced lncRNAs on crop yield. In this study, we cloned nine isoforms resulting from the alternative splicing of the lncRNA LAIR in rice. The LAIR isoforms are generated via alternative 5'/3' splice sites and different combinations of specific introns. All LAIR isoforms activate the expression of the neighboring LRK1 gene and enhance yield-related rice traits. In addition, there are slight differences in the binding ability of LAIR isoforms to the epigenetic modification-related proteins OsMOF and OsWDR5, which affect the enrichment of H4K16ac and H3K4me3 at the LRK1 locus, and consequently fine-tune the regulation of LRK1 expression and yield-related traits. These differences in binding may be caused by polymorphic changes to the RNA secondary structure resulting from alternative splicing. It was also observed that the composition of LAIR isoforms was sensitive to abiotic stress. These findings suggest that the alternative splicing of LAIR leads to the formation of a functional transcript population that precisely regulates yield-related gene expression, which may be relevant for phenotypic polymorphism-based crop breeding under changing environmental conditions.

2.
Int J Mol Sci ; 24(12)2023 Jun 18.
Article in English | MEDLINE | ID: mdl-37373450

ABSTRACT

Spikelet number per panicle (SNP) is one of the most important yield components in rice. Rice ENHANCING BIOMASS AND SPIKELET NUMBER (OsEBS), a gene involved in improved SNP and yield, has been cloned from an accession of Dongxiang wild rice. However, the mechanism of OsEBS increasing rice SNP is poorly understood. In this study, the RNA-Seq technology was used to analyze the transcriptome of wildtype Guichao 2 and OsEBS over-expression line B102 at the heading stage, and analysis of the evolution of OsEBS was also conducted. A total of 5369 differentially expressed genes (DEGs) were identified between Guichao2 and B102, most of which were down-regulated in B102. Analysis of the expression of endogenous hormone-related genes revealed that 63 auxin-related genes were significantly down-regulated in B102. Gene Ontogeny (GO) enrichment analysis showed that the 63 DEGs were mainly enriched in eight GO terms, including auxin-activated signaling pathway, auxin polar transport, auxin transport, basipetal auxin transport, and amino acid transmembrane transport, most of which were directly or indirectly related to polar auxin transport. Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis further verified that the down-regulated genes related to polar auxin transport had important effects on increased SNP. Analysis of the evolution of OsEBS found that OsEBS was involved in the differentiation of indica and japonica, and the differentiation of OsEBS supported the multi-origin model of rice domestication. Indica (XI) subspecies harbored higher nucleotide diversity than japonica (GJ) subspecies in the OsEBS region, and XI experienced strong balancing selection during evolution, while selection in GJ was neutral. The degree of genetic differentiation between GJ and Bas subspecies was the smallest, while it was the highest between GJ and Aus. Phylogenetic analysis of the Hsp70 family in O. sativa, Brachypodium distachyon, and Arabidopsis thaliana indicated that changes in the sequences of OsEBS were accelerated during evolution. Accelerated evolution and domain loss in OsEBS resulted in neofunctionalization. The results obtained from this study provide an important theoretical basis for high-yield rice breeding.


Subject(s)
Oryza , RNA-Seq , Oryza/genetics , Phylogeny , Plant Breeding , Gene Expression Profiling , Transcriptome
3.
Front Plant Sci ; 14: 1152196, 2023.
Article in English | MEDLINE | ID: mdl-37035088

ABSTRACT

Plant height and grain size are important agronomic traits affecting rice yield. Various plant hormones participate in the regulation of plant height and grain size in rice. However, how these hormones cooperate to regulate plant height and grain size is poorly understood. In this study, we identified a brassinosteroid-related gene, hfr131, from an introgression line constructed using Oryza longistaminata, that caused brassinosteroid insensitivity and reduced plant height and grain length in rice. Further study showed that hfr131 is a new allele of OsBRI1 with a single-nucleotide polymorphism (G to A) in the coding region, leading to a T988I conversion at a conserved site of the kinase domain. By combining yeast one-hybrid assays, chromatin immunoprecipitation-quantitative PCR and gene expression quantification, we demonstrated that OsARF17, an auxin response factor, could bind to the promoter region of HFR131 and positively regulated HFR131 expression, thereby regulating the plant height and grain length, and influencing brassinosteroid sensitivity. Haplotype analysis showed that the consociation of OsAFR17Hap1 /HFR131Hap6 conferred an increase in grain length. Overall, this study identified hfr131 as a new allele of OsBRI1 that regulates plant height and grain length in rice, revealed that brassinosteroid and auxin might coordinate through OsARF17-HFR131 interaction, and provided a potential breeding target for improvement of rice yield.

4.
J Integr Plant Biol ; 65(7): 1753-1766, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36939166

ABSTRACT

Auxin is an important phytohormone in plants, and auxin signaling pathways in rice play key roles in regulating its growth, development, and productivity. To investigate how rice grain yield traits are regulated by auxin signaling pathways and to facilitate their application in rice improvement, we validated the functional relationships among regulatory genes such as OsIAA10, OsSK41, and OsARF21 that are involved in one of the auxin (OsIAA10) signaling pathways. We assessed the phenotypic effects of these genes on several grain yield traits across two environments using knockout and/or overexpression transgenic lines. Based on the results, we constructed a model that showed how grain yield traits were regulated by OsIAA10 and OsTIR1, OsAFB2, and OsSK41 and OsmiR393 in the OsSK41-OsIAA10-OsARF module and by OsARF21 in the transcriptional regulation of downstream auxin response genes in the OsSK41-OsIAA10-OsARF module. The population genomic analyses revealed rich genetic diversity and the presence of major functional alleles at most of these loci in rice populations. The strong differentiation of many major alleles between Xian/indica and Geng/japonica subspecies and/or among modern varieties and landraces suggested that they contributed to improved productivity during evolution and breeding. We identified several important aspects associated with the genetic and molecular bases of rice grain and yield traits that were regulated by auxin signaling pathways. We also suggested rice auxin response factor (OsARF) activators as candidate target genes for improving specific target traits by overexpression and/or editing subspecies-specific alleles and by searching and pyramiding the 'best' gene allelic combinations at multiple regulatory genes in auxin signaling pathways in rice breeding programs.


Subject(s)
Oryza , Oryza/metabolism , Plant Breeding , Phenotype , Indoleacetic Acids/metabolism , Edible Grain/genetics , Edible Grain/metabolism
5.
J Integr Plant Biol ; 65(7): 1782-1793, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36965127

ABSTRACT

Amylose content (AC) is the main factor determining the palatability, viscosity, transparency, and digestibility of rice (Oryza sativa) grains. AC in rice grains is mainly controlled by different alleles of the Waxy (Wx) gene. The AP2/EREBP transcription factor OsEBP89 interacts with the MYC-like protein OsBP5 to synergistically regulate the expression of Wx. Here, we determined that the GLYCOGEN SYNTHASE KINASE 5 (OsGSK5, also named SHAGGY-like kinase 41 [OsSK41]) inhibits the transcriptional activation activity of OsEBP89 in rice grains during amylose biosynthesis. The loss of OsSK41 function enhanced Wx expression and increased AC in rice grains. By contrast, the loss of function of OsEBP89 reduced Wx expression and decreased AC in rice grains. OsSK41 interacts with OsEBP89 and phosphorylates four of its sites (Thr-28, Thr-30, Ser-238, and Thr-257), which makes OsEBP89 unstable and attenuates its interaction with OsBP5. Wx promoter activity was relatively weak when regulated by the phosphomimic variant OsEBP89E -OsBP5 but relatively strong when regulated by the nonphosphorylatable variant OsEBP89A -OsBP5. Therefore, OsSK41-mediated phosphorylation of OsEBP89 represents an additional layer of complexity in the regulation of amylose biosynthesis during rice grain development. In addition, our findings provide four possible sites for regulating rice grain AC via precise gene editing.


Subject(s)
Endosperm , Oryza , Endosperm/metabolism , Amylose/metabolism , Oryza/metabolism , Promoter Regions, Genetic , Edible Grain/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055011

ABSTRACT

Developing methods for increasing the biomass and improving the plant architecture is important for crop improvement. We herein describe a gene belonging to the RING_Ubox (RING (Really Interesting New Gene) finger domain and U-box domain) superfamily, PLANT ARCHITECTURE and GRAIN NUMBER 1 (PAGN1), which regulates the number of grains per panicle, the plant height, and the number of tillers. We used the CRISPR/Cas9 system to introduce loss-of-function mutations to OsPAGN1. Compared with the control plants, the resulting pagn1 mutant plants had a higher grain yield because of increases in the plant height and in the number of tillers and grains per panicle. Thus, OsPAGN1 may be useful for the genetic improvement of plant architecture and yield. An examination of evolutionary relationships revealed that OsPAGN1 is highly conserved in rice. We demonstrated that OsPAGN1 can interact directly with OsCNR10 (CELL NUMBER REGULATOR10), which negatively regulates the number of rice grains per panicle. A transcriptome analysis indicated that silencing OsPAGN1 affects the levels of active cytokinins in rice. Therefore, our findings have clarified the OsPAGN1 functions related to rice growth and grain development.


Subject(s)
Edible Grain/growth & development , Edible Grain/genetics , Gene Expression Regulation, Plant , Oryza/anatomy & histology , Oryza/physiology , Plant Proteins/genetics , Zinc Fingers/genetics , Fluorescent Antibody Technique , Gene Knockout Techniques , Oryza/cytology , Plant Development , Plant Proteins/chemistry , Plant Structures , Plants, Genetically Modified , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...